En ℝ, min(a,b)+c = min(a+c,b+c)
Demostrar con Lean4 que si \(a\), \(b\) y \(c\) números reales, entonces \[\min(a,b)+c = \min(a+c,b+c)\]
Para ello, completar la siguiente teoría de Lean4:
import Mathlib.Data.Real.Basic import Mathlib.Tactic variable {a b c : ℝ} example : min a b + c = min (a + c) (b + c) := by sorry
Demostraciones en lenguaje natural (LN)
1ª demostración en LN
Aplicando la propiedad antisimétrica a las siguientes desigualdades \begin{align} \min(a, b) + c \leq \min(a + c, b + c) \tag{1} \\ \min(a + c, b + c) \leq \min(a, b) + c \tag{2} \end{align}
Para demostrar (1) basta demostrar que se verifican las siguientes desigualdades \begin{align} \min(a, b) + c &\leq a + c \tag{1a} \\ \min(a, b) + c &\leq b + c \tag{1b} \end{align} que se tienen porque se verifican las siguientes desigualdades \begin{align} \min(a, b) &\leq a \\ \min(a, b) &\leq b \end{align}
Para demostrar (2) basta demostrar que se verifica \[ \min(a + c, b + c) - c \leq \min(a, b) \] que se demuestra usando (1); en efecto, \begin{align} \min(a + c, b + c) - c &\leq \min(a + c - c, b + c - c) &&\text{[por (1)]}\\ &= \min(a, b) \end{align}
2ª demostración en LN
Por casos según \(a \leq b\).
1º caso: Supongamos que \(a \leq b\). Entonces, \begin{align} \min(a, b) + c &= a + c \\ &= \min(a + c, b + c) \end{align}
2º caso: Supongamos que \(a \nleq b\). Entonces, \begin{align} \min(a, b) + c &= b + c \\ &= \min(a + c, b + c) \end{align}
Demostraciones con Lean4
import Mathlib.Data.Real.Basic import Mathlib.Tactic variable {a b c : ℝ} -- En las demostraciones se usarán los siguientes lemas auxiliares -- aux1 : min a b + c ≤ min (a + c) (b + c) -- aux2 : min (a + c) (b + c) ≤ min a b + c -- cuyas demostraciones se exponen a continuación. -- 1ª demostración de aux1 lemma aux1 : min a b + c ≤ min (a + c) (b + c) := by have h1 : min a b ≤ a := min_le_left a b have h2 : min a b + c ≤ a + c := add_le_add_right h1 c have h3 : min a b ≤ b := min_le_right a b have h4 : min a b + c ≤ b + c := add_le_add_right h3 c show min a b + c ≤ min (a + c) (b + c) exact le_min h2 h4 -- 2ª demostración de aux1 example : min a b + c ≤ min (a + c) (b + c) := by apply le_min { apply add_le_add_right exact min_le_left a b } { apply add_le_add_right exact min_le_right a b } -- 3ª demostración de aux1 example : min a b + c ≤ min (a + c) (b + c) := le_min (add_le_add_right (min_le_left a b) c) (add_le_add_right (min_le_right a b) c) -- 1ª demostración de aux2 lemma aux2 : min (a + c) (b + c) ≤ min a b + c := by have h1 : min (a + c) (b + c) + -c ≤ min a b { calc min (a + c) (b + c) + -c ≤ min (a + c + -c) (b + c + -c) := aux1 _ = min a b := by ring_nf } show min (a + c) (b + c) ≤ min a b + c exact add_neg_le_iff_le_add.mp h1 -- 1ª demostración del ejercicio example : min a b + c = min (a + c) (b + c) := by have h1 : min a b + c ≤ min (a + c) (b + c) := aux1 have h2 : min (a + c) (b + c) ≤ min a b + c := aux2 show min a b + c = min (a + c) (b + c) exact le_antisymm h1 h2 -- 2ª demostración del ejercicio example : min a b + c = min (a + c) (b + c) := by apply le_antisymm { show min a b + c ≤ min (a + c) (b + c) exact aux1 } { show min (a + c) (b + c) ≤ min a b + c exact aux2 } -- 3ª demostración del ejercicio example : min a b + c = min (a + c) (b + c) := by apply le_antisymm { exact aux1 } { exact aux2 } -- 4ª demostración del ejercicio example : min a b + c = min (a + c) (b + c) := le_antisymm aux1 aux2 -- 5ª demostración del ejercicio example : min a b + c = min (a + c) (b + c) := by by_cases h : a ≤ b { have h1 : a + c ≤ b + c := add_le_add_right h c calc min a b + c = a + c := by simp [min_eq_left h] _ = min (a + c) (b + c) := by simp [min_eq_left h1]} { have h2: b ≤ a := le_of_not_le h have h3 : b + c ≤ a + c := add_le_add_right h2 c calc min a b + c = b + c := by simp [min_eq_right h2] _ = min (a + c) (b + c) := by simp [min_eq_right h3]} -- 6ª demostración del ejercicio example : min a b + c = min (a + c) (b + c) := (min_add_add_right a b c).symm -- Lemas usados -- ============ -- #check (add_le_add_right : b ≤ c → ∀ (a : ℝ), b + a ≤ c + a) -- #check (add_neg_le_iff_le_add : a - b ≤ c ↔ a ≤ c + b) -- #check (le_antisymm : a ≤ b → b ≤ a → a = b) -- #check (le_min : c ≤ a → c ≤ b → c ≤ min a b) -- #check (min_add_add_right a b c : min (a + c) (b + c) = min a b + c) -- #check (min_eq_left : a ≤ b → min a b = a) -- #check (min_eq_right : b ≤ a → min a b = b) -- #check (min_le_left a b : min a b ≤ a) -- #check (min_le_right a b : min a b ≤ b)
Demostraciones interactivas
Se puede interactuar con las demostraciones anteriores en Lean 4 Web.
Referencias
- J. Avigad y P. Massot. Mathematics in Lean, p. 18.