En ℝ, {0 < ε, ε ≤ 1, |x| < ε, |y| < ε} ⊢ |xy| < ε
Demostrar con Lean4 que en ℝ \[ \{0 < ε, ε ≤ 1, |x| < ε, |y| < ε\} ⊢ |xy| < ε \]
Para ello, completar la siguiente teoría de Lean4:
import Mathlib.Data.Real.Basic example : ∀ {x y ε : ℝ}, 0 < ε → ε ≤ 1 → |x| < ε → |y| < ε → |x * y| < ε := by sorry
Demostración en lenguaje natural
Se usarán los siguientes lemas \begin{align} &|a·b| = |a|·|b| \tag{L1} \\ &0·a = 0 \tag{L2} \\ &0 ≤ |a| \tag{L3} \\ &a ≤ b → a ≠ b → a < b \tag{L4} \\ &a ≠ b ↔ b ≠ a \tag{L5} \\ &0 < a → (ab < ac ↔ b < c) \tag{L6} \\ &0 < a → (ba < ca ↔ b < c) \tag{L7} \\ &0 < a → (ba ≤ ca ↔ b ≤ c) \tag{L8} \\ &1·a = a \tag{L9} \\ \end{align}
Sean \(x, y, ε ∈ ℝ\) tales que \begin{align} 0 &< ε \tag{he1} \\ ε &≤ 1 \tag{he2} \\ |x| &< ε \tag{hx} \\ |y| &< ε \tag{hy} \end{align} y tenemos que demostrar que \[ |xy| < ε \] Lo haremos distinguiendo caso según \(|x| = 0\).
1º caso. Supongamos que \[ |x| = 0 \tag{1} \] Entonces, \begin{align} |xy| &= |x||y| &&\text{[por L1]} \\ &= 0|y| &&\text{[por h1]} \\ &= 0 &&\text{[por L2]} \\ &< ε &&\text{[por he1]} \end{align}
2º caso. Supongamos que \[ |x| ≠ 0 \tag{2} \] Entonces, por L4, L3 y L5, se tiene \[ 0 < x \tag{3} \] y, por tanto, \begin{align} |xy| &= |x||y| &&\text{[por L1]} \\ &< |x|ε &&\text{[por L6, (3) y (hy)]} \\ &< εε &&\text{[por L7, (he1) y (hx)]} \\ &≤ 1ε &&\text{[por L8, (he1) y (he2)]} \\ &= ε &&\text{[por L9]} \end{align}
Demostraciones con Lean4
import Mathlib.Data.Real.Basic -- 1ª demostración -- =============== example : ∀ {x y ε : ℝ}, 0 < ε → ε ≤ 1 → |x| < ε → |y| < ε → |x * y| < ε := by intros x y ε he1 he2 hx hy by_cases h : (|x| = 0) . -- h : |x| = 0 show |x * y| < ε calc |x * y| = |x| * |y| := abs_mul x y _ = 0 * |y| := by rw [h] _ = 0 := zero_mul (abs y) _ < ε := he1 . -- h : ¬|x| = 0 have h1 : 0 < |x| := by have h2 : 0 ≤ |x| := abs_nonneg x show 0 < |x| exact lt_of_le_of_ne h2 (ne_comm.mpr h) show |x * y| < ε calc |x * y| = |x| * |y| := abs_mul x y _ < |x| * ε := (mul_lt_mul_left h1).mpr hy _ < ε * ε := (mul_lt_mul_right he1).mpr hx _ ≤ 1 * ε := (mul_le_mul_right he1).mpr he2 _ = ε := one_mul ε -- 2ª demostración -- =============== example : ∀ {x y ε : ℝ}, 0 < ε → ε ≤ 1 → |x| < ε → |y| < ε → |x * y| < ε := by intros x y ε he1 he2 hx hy by_cases h : (|x| = 0) . -- h : |x| = 0 show |x * y| < ε calc |x * y| = |x| * |y| := by apply abs_mul _ = 0 * |y| := by rw [h] _ = 0 := by apply zero_mul _ < ε := by apply he1 . -- h : ¬|x| = 0 have h1 : 0 < |x| := by have h2 : 0 ≤ |x| := by apply abs_nonneg exact lt_of_le_of_ne h2 (ne_comm.mpr h) show |x * y| < ε calc |x * y| = |x| * |y| := by rw [abs_mul] _ < |x| * ε := by apply (mul_lt_mul_left h1).mpr hy _ < ε * ε := by apply (mul_lt_mul_right he1).mpr hx _ ≤ 1 * ε := by apply (mul_le_mul_right he1).mpr he2 _ = ε := by rw [one_mul] -- 3ª demostración -- =============== example : ∀ {x y ε : ℝ}, 0 < ε → ε ≤ 1 → |x| < ε → |y| < ε → |x * y| < ε := by intros x y ε he1 he2 hx hy by_cases h : (|x| = 0) . -- h : |x| = 0 show |x * y| < ε calc |x * y| = |x| * |y| := by simp only [abs_mul] _ = 0 * |y| := by simp only [h] _ = 0 := by simp only [zero_mul] _ < ε := by simp only [he1] . -- h : ¬|x| = 0 have h1 : 0 < |x| := by have h2 : 0 ≤ |x| := by simp only [abs_nonneg] exact lt_of_le_of_ne h2 (ne_comm.mpr h) show |x * y| < ε calc |x * y| = |x| * |y| := by simp [abs_mul] _ < |x| * ε := by simp only [mul_lt_mul_left, h1, hy] _ < ε * ε := by simp only [mul_lt_mul_right, he1, hx] _ ≤ 1 * ε := by simp only [mul_le_mul_right, he1, he2] _ = ε := by simp only [one_mul] -- Lemas usados -- ============ -- variable (a b c : ℝ) -- #check (abs_mul a b : |a * b| = |a| * |b|) -- #check (abs_nonneg a : 0 ≤ |a|) -- #check (lt_of_le_of_ne : a ≤ b → a ≠ b → a < b) -- #check (mul_le_mul_right : 0 < a → (b * a ≤ c * a ↔ b ≤ c)) -- #check (mul_lt_mul_left : 0 < a → (a * b < a * c ↔ b < c)) -- #check (mul_lt_mul_right : 0 < a → (b * a < c * a ↔ b < c)) -- #check (ne_comm : a ≠ b ↔ b ≠ a) -- #check (one_mul a : 1 * a = a) -- #check (zero_mul a : 0 * a = 0)
Demostraciones interactivas
Se puede interactuar con las demostraciones anteriores en Lean 4 Web.
Referencias
- J. Avigad y P. Massot. Mathematics in Lean, p. 24.