Skip to main content

En ℝ, {0 < ε, ε ≤ 1, |x| < ε, |y| < ε} ⊢ |xy| < ε

Demostrar con Lean4 que en ℝ \[ \{0 < ε, ε ≤ 1, |x| < ε, |y| < ε\} ⊢ |xy| < ε \]

Para ello, completar la siguiente teoría de Lean4:

import Mathlib.Data.Real.Basic

example :
   {x y ε : }, 0 < ε  ε  1  |x| < ε  |y| < ε  |x * y| < ε :=
by sorry

Demostración en lenguaje natural

Se usarán los siguientes lemas \begin{align} &|a·b| = |a|·|b| \tag{L1} \\ &0·a = 0 \tag{L2} \\ &0 ≤ |a| \tag{L3} \\ &a ≤ b → a ≠ b → a < b \tag{L4} \\ &a ≠ b ↔ b ≠ a \tag{L5} \\ &0 < a → (ab < ac ↔ b < c) \tag{L6} \\ &0 < a → (ba < ca ↔ b < c) \tag{L7} \\ &0 < a → (ba ≤ ca ↔ b ≤ c) \tag{L8} \\ &1·a = a \tag{L9} \\ \end{align}

Sean \(x, y, ε ∈ ℝ\) tales que \begin{align} 0 &< ε \tag{he1} \\ ε &≤ 1 \tag{he2} \\ |x| &< ε \tag{hx} \\ |y| &< ε \tag{hy} \end{align} y tenemos que demostrar que \[ |xy| < ε \] Lo haremos distinguiendo caso según \(|x| = 0\).

1º caso. Supongamos que \[ |x| = 0 \tag{1} \] Entonces, \begin{align} |xy| &= |x||y| &&\text{[por L1]} \\ &= 0|y| &&\text{[por h1]} \\ &= 0 &&\text{[por L2]} \\ &< ε &&\text{[por he1]} \end{align}

2º caso. Supongamos que \[ |x| ≠ 0 \tag{2} \] Entonces, por L4, L3 y L5, se tiene \[ 0 < x \tag{3} \] y, por tanto, \begin{align} |xy| &= |x||y| &&\text{[por L1]} \\ &< |x|ε &&\text{[por L6, (3) y (hy)]} \\ &< εε &&\text{[por L7, (he1) y (hx)]} \\ &≤ 1ε &&\text{[por L8, (he1) y (he2)]} \\ &= ε &&\text{[por L9]} \end{align}

Demostraciones con Lean4

import Mathlib.Data.Real.Basic

-- 1ª demostración
-- ===============

example :
   {x y ε : }, 0 < ε  ε  1  |x| < ε  |y| < ε  |x * y| < ε :=
by
  intros x y ε he1 he2 hx hy
  by_cases h : (|x| = 0)
  . -- h : |x| = 0
    show |x * y| < ε
    calc
      |x * y|
         = |x| * |y| := abs_mul x y
      _  = 0 * |y|   := by rw [h]
      _  = 0         := zero_mul (abs y)
      _  < ε         := he1
  . -- h : ¬|x| = 0
    have h1 : 0 < |x| := by
      have h2 : 0  |x| := abs_nonneg x
      show 0 < |x|
      exact lt_of_le_of_ne h2 (ne_comm.mpr h)
    show |x * y| < ε
    calc |x * y|
         = |x| * |y| := abs_mul x y
       _ < |x| * ε   := (mul_lt_mul_left h1).mpr hy
       _ < ε * ε     := (mul_lt_mul_right he1).mpr hx
       _  1 * ε     := (mul_le_mul_right he1).mpr he2
       _ = ε         := one_mul ε

-- 2ª demostración
-- ===============

example :
   {x y ε : }, 0 < ε  ε  1  |x| < ε  |y| < ε  |x * y| < ε :=
by
  intros x y ε he1 he2 hx hy
  by_cases h : (|x| = 0)
  . -- h : |x| = 0
    show |x * y| < ε
    calc
      |x * y| = |x| * |y| := by apply abs_mul
            _ = 0 * |y|   := by rw [h]
            _ = 0         := by apply zero_mul
            _ < ε         := by apply he1
  . -- h : ¬|x| = 0
    have h1 : 0 < |x| := by
      have h2 : 0  |x| := by apply abs_nonneg
      exact lt_of_le_of_ne h2 (ne_comm.mpr h)
    show |x * y| < ε
    calc
      |x * y| = |x| * |y| := by rw [abs_mul]
            _ < |x| * ε   := by apply (mul_lt_mul_left h1).mpr hy
            _ < ε * ε     := by apply (mul_lt_mul_right he1).mpr hx
            _  1 * ε     := by apply (mul_le_mul_right he1).mpr he2
            _ = ε         := by rw [one_mul]

-- 3ª demostración
-- ===============

example :
   {x y ε : }, 0 < ε  ε  1  |x| < ε  |y| < ε  |x * y| < ε :=
by
  intros x y ε he1 he2 hx hy
  by_cases h : (|x| = 0)
  . -- h : |x| = 0
    show |x * y| < ε
    calc |x * y| = |x| * |y| := by simp only [abs_mul]
               _ = 0 * |y|   := by simp only [h]
               _ = 0         := by simp only [zero_mul]
               _ < ε         := by simp only [he1]
  . -- h : ¬|x| = 0
    have h1 : 0 < |x| := by
      have h2 : 0  |x| := by simp only [abs_nonneg]
      exact lt_of_le_of_ne h2 (ne_comm.mpr h)
    show |x * y| < ε
    calc
      |x * y| = |x| * |y| := by simp [abs_mul]
            _ < |x| * ε   := by simp only [mul_lt_mul_left, h1, hy]
            _ < ε * ε     := by simp only [mul_lt_mul_right, he1, hx]
            _  1 * ε     := by simp only [mul_le_mul_right, he1, he2]
            _ = ε         := by simp only [one_mul]

-- Lemas usados
-- ============

-- variable (a b c : ℝ)
-- #check (abs_mul a b : |a * b| = |a| * |b|)
-- #check (abs_nonneg a : 0 ≤ |a|)
-- #check (lt_of_le_of_ne : a ≤ b → a ≠ b → a < b)
-- #check (mul_le_mul_right : 0 < a → (b * a ≤ c * a ↔ b ≤ c))
-- #check (mul_lt_mul_left : 0 < a → (a * b < a * c ↔ b < c))
-- #check (mul_lt_mul_right : 0 < a → (b * a < c * a ↔ b < c))
-- #check (ne_comm : a ≠ b ↔ b ≠ a)
-- #check (one_mul a : 1 * a = a)
-- #check (zero_mul a : 0 * a = 0)

Demostraciones interactivas

Se puede interactuar con las demostraciones anteriores en Lean 4 Web.

Referencias