Skip to main content

Si (∃ x, y ∈ ℝ)[z = x² + y² ∨ z = x² + y² + 1], entonces z ≥ 0

Demostrar con Lean4 que si \((∃ x, y ∈ ℝ)[z = x² + y² ∨ z = x² + y² + 1]\), entonces \(z ≥ 0\).

Para ello, completar la siguiente teoría de Lean4:

import Mathlib.Data.Real.Basic
import Mathlib.Tactic
variable {z : }

example
  (h :  x y, z = x^2 + y^2  z = x^2 + y^2 + 1)
  : z  0 :=
by sorry

Demostración en lenguaje natural

Usaremos los siguientes lemas \begin{align} &(∀ x ∈ ℝ)[x² ≥ 0] \tag{L1} \newline &(∀ x, y ∈ ℝ)[x ≥ 0 → y ≥ 0 → x + y ≥ 0] \tag{L2} \newline &1 ≥ 0 \tag{L3} \end{align}

Sean \(a\) y \(b\) tales que \[ z = a² + b² ∨ z = a² + b² + 1 \] Entonces, por L1, se tiene que \begin{align} &a² ≥ 0 \tag{1} \newline &b² ≥ 0 \tag{2} \end{align}

En el primer caso, \(z = a² + b²\) y se tiene que \(z ≥ 0\) por el lema L2 aplicado a (1) y (2).

En el segundo caso, \(z = a² + b² + 1\) y se tiene que \(z ≥ 0\) por el lema L2 aplicado a (1), (2) y L3.

Demostraciones con Lean4

import Mathlib.Data.Real.Basic
import Mathlib.Tactic
variable {z : }

-- 1ª demostración
-- ===============

example
  (h :  x y, z = x^2 + y^2  z = x^2 + y^2 + 1)
  : z  0 :=
by
  rcases h with a, b, h1
  -- a b : ℝ
  -- h1 : z = a ^ 2 + b ^ 2 ∨ z = a ^ 2 + b ^ 2 + 1
  have h2 : a ^ 2  0 := pow_two_nonneg a
  have h3 : b ^ 2  0 := pow_two_nonneg b
  have h4 : a ^ 2 + b ^ 2  0 := add_nonneg h2 h3
  rcases h1 with h5 | h6
  . -- h5 : z = a ^ 2 + b ^ 2
    show z  0
    calc z = a ^ 2 + b ^ 2 := h5
         _  0             := add_nonneg h2 h3
  . -- h6 : z = a ^ 2 + b ^ 2 + 1
    show z  0
    calc z = (a ^ 2 + b ^ 2) + 1 := h6
         _  0                   := add_nonneg h4 zero_le_one

-- 2ª demostración
-- ===============

example
  (h :  x y, z = x^2 + y^2  z = x^2 + y^2 + 1)
  : z  0 :=
by
  rcases h with a, b, h1 | h2
  . -- h1 : z = a ^ 2 + b ^ 2
    have h1a : a ^ 2  0 := pow_two_nonneg a
    have h1b : b ^ 2  0 := pow_two_nonneg b
    show z  0
    calc z = a ^ 2 + b ^ 2 := h1
         _  0             := add_nonneg h1a h1b
  . -- h2 : z = a ^ 2 + b ^ 2 + 1
    have h2a : a ^ 2  0         := pow_two_nonneg a
    have h2b : b ^ 2  0         := pow_two_nonneg b
    have h2c : a ^ 2 + b ^ 2  0 := add_nonneg h2a h2b
    show z  0
    calc z = (a ^ 2 + b ^ 2) + 1 := h2
         _  0                   := add_nonneg h2c zero_le_one

-- 3ª demostración
-- ===============

example
  (h :  x y, z = x^2 + y^2  z = x^2 + y^2 + 1)
  : z  0 :=
by
  rcases h with a, b, h1 | h2
  . -- h1 : z = a ^ 2 + b ^ 2
    rw [h1]
    -- ⊢ a ^ 2 + b ^ 2 ≥ 0
    apply add_nonneg
    . -- ⊢ 0 ≤ a ^ 2
      apply pow_two_nonneg
    . -- ⊢ 0 ≤ b ^ 2
      apply pow_two_nonneg
  . -- h2 : z = a ^ 2 + b ^ 2 + 1
    rw [h2]
    -- ⊢ a ^ 2 + b ^ 2 + 1 ≥ 0
    apply add_nonneg
    . -- ⊢ 0 ≤ a ^ 2 + b ^ 2
      apply add_nonneg
      . -- ⊢ 0 ≤ a ^ 2
        apply pow_two_nonneg
      . -- ⊢ 0 ≤ b ^ 2
        apply pow_two_nonneg
    . -- ⊢ 0 ≤ 1
      exact zero_le_one

-- 4ª demostración
-- ===============

example
  (h :  x y, z = x^2 + y^2  z = x^2 + y^2 + 1)
  : z  0 :=
by
  rcases h with a, b, rfl | rfl
  . -- ⊢ a ^ 2 + b ^ 2 ≥ 0
    apply add_nonneg
    . -- ⊢ 0 ≤ a ^ 2
      apply pow_two_nonneg
    . -- ⊢ 0 ≤ b ^ 2
      apply pow_two_nonneg
  . -- ⊢ a ^ 2 + b ^ 2 + 1 ≥ 0
    apply add_nonneg
    . -- ⊢ 0 ≤ a ^ 2 + b ^ 2
      apply add_nonneg
      . -- ⊢ 0 ≤ a ^ 2
        apply pow_two_nonneg
      . -- ⊢ 0 ≤ b ^ 2
        apply pow_two_nonneg
    . -- ⊢ 0 ≤ 1
      exact zero_le_one

-- 5ª demostración
-- ===============

example
  (h :  x y, z = x^2 + y^2  z = x^2 + y^2 + 1)
  : z  0 :=
by
  rcases h with a, b, rfl | rfl
  . -- ⊢ a ^ 2 + b ^ 2 ≥ 0
    nlinarith
  . -- ⊢ a ^ 2 + b ^ 2 + 1 ≥ 0
    nlinarith

-- 6ª demostración
-- ===============

example
  (h :  x y, z = x^2 + y^2  z = x^2 + y^2 + 1)
  : z  0 :=
by rcases h with a, b, rfl | rfl <;> nlinarith

-- Lemas usados
-- ============

-- variable (x y : ℝ)
-- #check (add_nonneg : 0 ≤ x → 0 ≤ y → 0 ≤ x + y)
-- #check (pow_two_nonneg x : 0 ≤ x ^ 2)
-- #check (zero_le_one : 0 ≤ 1)

Demostraciones interactivas

Se puede interactuar con las demostraciones anteriores en Lean 4 Web.

Referencias

Demostraciones con Isabelle/HOL

theory Desigualdad_con_rcases
  imports Main "HOL.Real"
begin

(* 1ª demostración *)
lemma
  assumes "∃x y :: real. (z = x^2 + y^2 ∨ z = x^2 + y^2 + 1)"
  shows "z ≥ 0"
proof -
  obtain x y where hxy: "z = x^2 + y^2 ∨ z = x^2 + y^2 + 1"
    using assms by auto
  { assume "z = x^2 + y^2"
    have "x^2 + y^2 ≥ 0" by simp
    then have "z ≥ 0" using `z = x^2 + y^2` by simp }
  { assume "z = x^2 + y^2 + 1"
    have "x^2 + y^2 ≥ 0" by simp
    then have "z ≥ 1" using `z = x^2 + y^2 + 1` by simp }
  with hxy show "z ≥ 0" by auto
qed

(* 2ª demostración *)
lemma
  assumes "∃x y :: real. (z = x^2 + y^2 ∨ z = x^2 + y^2 + 1)"
  shows "z ≥ 0"
proof -
  obtain x y where hxy: "z = x^2 + y^2 ∨ z = x^2 + y^2 + 1"
    using assms by auto
  with hxy show "z ≥ 0" by auto
qed

(* 3ª demostración *)
lemma
  assumes "∃x y :: real. (z = x^2 + y^2 ∨ z = x^2 + y^2 + 1)"
  shows "z ≥ 0"
  using assms by fastforce

end