Unión con la imagen
Demostrar con Lean4 que \[ f[s ∪ f⁻¹[v]] ⊆ f[s] ∪ v \]
Para ello, completar la siguiente teoría de Lean4:
import Mathlib.Data.Set.Function import Mathlib.Tactic open Set variable (α β : Type _) variable (f : α → β) variable (s : Set α) variable (v : Set β) example : f '' (s ∪ f ⁻¹' v) ⊆ f '' s ∪ v := by sorry
1. Demostración en lenguaje natural
Sea \(y ∈ f[s ∪ f⁻¹[v]]\). Entonces, existe un x tal que \begin{align} &x ∈ s ∪ f⁻¹[v] \tag{1} \newline &f(x) = y \tag{2} \end{align} De (1), se tiene que \(x ∈ s\) ó \(x ∈ f⁻¹[v]\). Vamos a demostrar en ambos casos que \[ y ∈ f[s] ∪ v \]
Caso 1: Supongamos que \(x ∈ s\). Entonces, \[ f(x) ∈ f[s] \] y, por (2), se tiene que \[ y ∈ f[s] \] Por tanto, \[ y ∈ f[s] ∪ v \]
Caso 2: Supongamos que \(x ∈ f⁻¹[v]\). Entonces, \[ f(x) ∈ v \] y, por (2), se tiene que \[ y ∈ v \] Por tanto, \[ y ∈ f[s] ∪ v \]
2. Demostraciones con Lean4
import Mathlib.Data.Set.Function import Mathlib.Tactic open Set variable (α β : Type _) variable (f : α → β) variable (s : Set α) variable (v : Set β) -- 1ª demostración -- =============== example : f '' (s ∪ f ⁻¹' v) ⊆ f '' s ∪ v := by intros y hy obtain ⟨x : α, hx : x ∈ s ∪ f ⁻¹' v ∧ f x = y⟩ := hy obtain ⟨hx1 : x ∈ s ∪ f ⁻¹' v, fxy : f x = y⟩ := hx cases' hx1 with xs xv . -- xs : x ∈ s have h1 : f x ∈ f '' s := mem_image_of_mem f xs have h2 : y ∈ f '' s := by rwa [fxy] at h1 show y ∈ f '' s ∪ v exact mem_union_left v h2 . -- xv : x ∈ f ⁻¹' v have h3 : f x ∈ v := mem_preimage.mp xv have h4 : y ∈ v := by rwa [fxy] at h3 show y ∈ f '' s ∪ v exact mem_union_right (f '' s) h4 -- 1ª demostración -- =============== example : f '' (s ∪ f ⁻¹' v) ⊆ f '' s ∪ v := by intros y hy obtain ⟨x : α, hx : x ∈ s ∪ f ⁻¹' v ∧ f x = y⟩ := hy obtain ⟨hx1 : x ∈ s ∪ f ⁻¹' v, fxy : f x = y⟩ := hx cases' hx1 with xs xv . -- xs : x ∈ s left -- ⊢ y ∈ f '' s use x . -- ⊢ y ∈ f '' s ∪ v right -- ⊢ y ∈ v rw [←fxy] -- ⊢ f x ∈ v exact xv -- 2ª demostración -- =============== example : f '' (s ∪ f ⁻¹' v) ⊆ f '' s ∪ v := by rintro y ⟨x, xs | xv, fxy⟩ -- y : β -- x : α . -- xs : x ∈ s -- ⊢ y ∈ f '' s ∪ v left -- ⊢ y ∈ f '' s use x, xs . -- xv : x ∈ f ⁻¹' v -- ⊢ y ∈ f '' s ∪ v right -- ⊢ y ∈ v rw [←fxy] -- ⊢ f x ∈ v exact xv -- 3ª demostración -- =============== example : f '' (s ∪ f ⁻¹' v) ⊆ f '' s ∪ v := by rintro y ⟨x, xs | xv, fxy⟩ <;> aesop -- Lemas usados -- ============ -- variable (x : α) -- variable (t : Set α) -- #check (mem_image_of_mem f : x ∈ s → f x ∈ f '' s) -- #check (mem_preimage : x ∈ f ⁻¹' v ↔ f x ∈ v) -- #check (mem_union_left t : x ∈ s → x ∈ s ∪ t) -- #check (mem_union_right s : x ∈ t → x ∈ s ∪ t)
Se puede interactuar con las demostraciones anteriores en Lean 4 Web.
3. Demostraciones con Isabelle/HOL
theory Union_con_la_imagen imports Main begin (* 1ª demostración *) lemma "f ` (s ∪ f -` v) ⊆ f ` s ∪ v" proof (rule subsetI) fix y assume "y ∈ f ` (s ∪ f -` v)" then show "y ∈ f ` s ∪ v" proof (rule imageE) fix x assume "y = f x" assume "x ∈ s ∪ f -` v" then show "y ∈ f ` s ∪ v" proof (rule UnE) assume "x ∈ s" then have "f x ∈ f ` s" by (rule imageI) with ‹y = f x› have "y ∈ f ` s" by (rule ssubst) then show "y ∈ f ` s ∪ v" by (rule UnI1) next assume "x ∈ f -` v" then have "f x ∈ v" by (rule vimageD) with ‹y = f x› have "y ∈ v" by (rule ssubst) then show "y ∈ f ` s ∪ v" by (rule UnI2) qed qed qed (* 2ª demostración *) lemma "f ` (s ∪ f -` v) ⊆ f ` s ∪ v" proof fix y assume "y ∈ f ` (s ∪ f -` v)" then show "y ∈ f ` s ∪ v" proof fix x assume "y = f x" assume "x ∈ s ∪ f -` v" then show "y ∈ f ` s ∪ v" proof assume "x ∈ s" then have "f x ∈ f ` s" by simp with ‹y = f x› have "y ∈ f ` s" by simp then show "y ∈ f ` s ∪ v" by simp next assume "x ∈ f -` v" then have "f x ∈ v" by simp with ‹y = f x› have "y ∈ v" by simp then show "y ∈ f ` s ∪ v" by simp qed qed qed (* 3ª demostración *) lemma "f ` (s ∪ f -` v) ⊆ f ` s ∪ v" proof fix y assume "y ∈ f ` (s ∪ f -` v)" then show "y ∈ f ` s ∪ v" proof fix x assume "y = f x" assume "x ∈ s ∪ f -` v" then show "y ∈ f ` s ∪ v" proof assume "x ∈ s" then show "y ∈ f ` s ∪ v" by (simp add: ‹y = f x›) next assume "x ∈ f -` v" then show "y ∈ f ` s ∪ v" by (simp add: ‹y = f x›) qed qed qed (* 4ª demostración *) lemma "f ` (s ∪ f -` v) ⊆ f ` s ∪ v" proof fix y assume "y ∈ f ` (s ∪ f -` v)" then show "y ∈ f ` s ∪ v" proof fix x assume "y = f x" assume "x ∈ s ∪ f -` v" then show "y ∈ f ` s ∪ v" using ‹y = f x› by blast qed qed (* 5ª demostración *) lemma "f ` (s ∪ f -` u) ⊆ f ` s ∪ u" by auto end