Skip to main content

Intersección con la imagen

Demostrar con Lean4 que \[ f[s] ∩ v = f[s ∩ f⁻¹[v]] \]

Para ello, completar la siguiente teoría de Lean4:

import Mathlib.Data.Set.Function
import Mathlib.Tactic

open Set

variable {α β : Type _}
variable (f : α  β)
variable (s : Set α)
variable (v : Set β)

example : (f '' s)  v = f '' (s  f ⁻¹' v) :=
by sorry

1. Demostración en lenguaje natural

Tenemmos que demostrar que, para todo \(y\), \[ y ∈ f[s] ∩ v ↔ y ∈ f[s ∩ f⁻¹[v]] \] Lo haremos demostrando las dos implicaciones.

(⟹) Supongamos que \(y ∈ f[s] ∩ v\). Entonces, \begin{align} &y ∈ f[s] \tag{1} \newline &y ∈ v \tag{2} \end{align} Por (1), existe un \(x\) tal que \begin{align} &x ∈ s \tag{3} \newline &f(x) = y \tag{4} \end{align} De (2) y (4), se tiene que \[ f(x) ∈ v \] y, por tanto, \[ x ∈ f⁻¹[v] \tag{5} \] De (3) y (5), se tiene que \[ x ∈ s ∩ f⁻¹[v] \] Por tanto, \[ f(x) ∈ f[s ∩ f⁻¹[v]] \] y, por (4), \[ y ∈ f[s ∩ f⁻¹[v]] \]

(⟸) Supongamos que \(y ∈ f[s ∩ f⁻¹[v]]\). Entonces, existe un \(x\) tal que \begin{align} &x ∈ s ∩ f⁻¹[v] \tag{6} \newline &f(x) = y \tag{7} \end{align} Por (6), se tiene que \begin{align} &x ∈ s \tag{8} \newline &x ∈ f⁻¹[v] \tag{9} \end{align} Por (8), se tiene que \[ f(x) ∈ f[s] \] y, por (7), \[ y ∈ f[s] \tag{10} \] Por (9), \[ f(x) ∈ v \] y, por (7), \[ y ∈ v \tag{11} \] Por (10) y (11), \[ y ∈ f[s] ∩ v \]

2. Demostraciones con Lean4

import Mathlib.Data.Set.Function
import Mathlib.Tactic

open Set

variable {α β : Type _}
variable (f : α  β)
variable (s : Set α)
variable (v : Set β)

-- 1ª demostración
-- ===============

example : (f '' s)  v = f '' (s  f ⁻¹' v) :=
by
  ext y
  -- y : β
  -- ⊢ y ∈ f '' s ∩ v ↔ y ∈ f '' (s ∩ f ⁻¹' v)
  constructor
  . -- ⊢ y ∈ f '' s ∩ v → y ∈ f '' (s ∩ f ⁻¹' v)
    intro hy
    -- hy : y ∈ f '' s ∩ v
    -- ⊢ y ∈ f '' (s ∩ f ⁻¹' v)
    cases' hy with hyfs yv
    -- hyfs : y ∈ f '' s
    -- yv : y ∈ v
    cases' hyfs with x hx
    -- x : α
    -- hx : x ∈ s ∧ f x = y
    cases' hx with xs fxy
    -- xs : x ∈ s
    -- fxy : f x = y
    have h1 : f x  v := by rwa [fxy] at yv
    have h3 : x  s  f ⁻¹' v := mem_inter xs h1
    have h4 : f x  f '' (s  f ⁻¹' v) := mem_image_of_mem f h3
    show y  f '' (s  f ⁻¹' v)
    rwa [fxy] at h4
  . -- ⊢ y ∈ f '' (s ∩ f ⁻¹' v) → y ∈ f '' s ∩ v
    intro hy
    -- hy : y ∈ f '' (s ∩ f ⁻¹' v)
    -- ⊢ y ∈ f '' s ∩ v
    cases' hy with x hx
    -- x : α
    -- hx : x ∈ s ∩ f ⁻¹' v ∧ f x = y
    cases' hx with hx1 fxy
    -- hx1 : x ∈ s ∩ f ⁻¹' v
    -- fxy : f x = y
    cases' hx1 with xs xfv
    -- xs : x ∈ s
    -- xfv : x ∈ f ⁻¹' v
    have h5 : f x  f '' s := mem_image_of_mem f xs
    have h6 : y  f '' s := by rwa [fxy] at h5
    have h7 : f x  v := mem_preimage.mp xfv
    have h8 : y  v := by rwa [fxy] at h7
    show y  f '' s  v
    exact mem_inter h6 h8

-- 2ª demostración
-- ===============

example : (f '' s)  v = f '' (s  f ⁻¹' v) :=
by
  ext y
  -- y : β
  -- ⊢ y ∈ f '' s ∩ v ↔ y ∈ f '' (s ∩ f ⁻¹' v)
  constructor
  . -- ⊢ y ∈ f '' s ∩ v → y ∈ f '' (s ∩ f ⁻¹' v)
    intro hy
    -- hy : y ∈ f '' s ∩ v
    -- ⊢ y ∈ f '' (s ∩ f ⁻¹' v)
    cases' hy with hyfs yv
    -- hyfs : y ∈ f '' s
    -- yv : y ∈ v
    cases' hyfs with x hx
    -- x : α
    -- hx : x ∈ s ∧ f x = y
    cases' hx with xs fxy
    -- xs : x ∈ s
    -- fxy : f x = y
    use x
    -- ⊢ x ∈ s ∩ f ⁻¹' v ∧ f x = y
    constructor
    . -- ⊢ x ∈ s ∩ f ⁻¹' v
      constructor
      . -- ⊢ x ∈ s
        exact xs
      . -- ⊢ x ∈ f ⁻¹' v
        rw [mem_preimage]
        -- ⊢ f x ∈ v
        rw [fxy]
        -- ⊢ y ∈ v
        exact yv
    . -- ⊢ f x = y
      exact fxy
  . -- ⊢ y ∈ f '' (s ∩ f ⁻¹' v) → y ∈ f '' s ∩ v
    intro hy
    -- hy : y ∈ f '' (s ∩ f ⁻¹' v)
    -- ⊢ y ∈ f '' s ∩ v
    cases' hy with x hx
    -- x : α
    -- hx : x ∈ s ∩ f ⁻¹' v ∧ f x = y
    constructor
    . -- ⊢ y ∈ f '' s
      use x
      -- ⊢ x ∈ s ∧ f x = y
      constructor
      . -- ⊢ x ∈ s
        exact hx.1.1
      . -- ⊢ f x = y
        exact hx.2
    . -- ⊢ y ∈ v
      cases' hx with hx1 fxy
      -- hx1 : x ∈ s ∩ f ⁻¹' v
      -- fxy : f x = y
      rw [fxy]
      -- ⊢ f x ∈ v
      rw [mem_preimage]
      -- ⊢ x ∈ f ⁻¹' v
      exact hx1.2

-- 3ª demostración
-- ===============

example : (f '' s)  v = f '' (s  f ⁻¹' v) :=
by
  ext y
  -- y : β
  -- ⊢ y ∈ f '' s ∩ v ↔ y ∈ f '' (s ∩ f ⁻¹' v)
  constructor
  . -- ⊢ y ∈ f '' s ∩ v → y ∈ f '' (s ∩ f ⁻¹' v)
    rintro ⟨⟨x, xs, fxy⟩, yv
    -- yv : y ∈ v
    -- x : α
    -- xs : x ∈ s
    -- fxy : f x = y
    -- ⊢ y ∈ f '' (s ∩ f ⁻¹' v)
    use x
    -- ⊢ x ∈ s ∩ f ⁻¹' v ∧ f x = y
    constructor
    . -- ⊢ x ∈ s ∩ f ⁻¹' v
      constructor
      . -- ⊢ x ∈ s
        exact xs
      . -- ⊢ x ∈ f ⁻¹' v
        rw [mem_preimage]
        -- ⊢ f x ∈ v
        rw [fxy]
        -- ⊢ y ∈ v
        exact yv
    . exact fxy
  . rintro x, xs, xv⟩, fxy
    -- x : α
    -- fxy : f x = y
    -- xs : x ∈ s
    -- xv : x ∈ f ⁻¹' v
    -- ⊢ y ∈ f '' s ∩ v
    constructor
    . -- ⊢ y ∈ f '' s
      use x, xs
    . -- ⊢ y ∈ v
      rw [fxy]
      -- ⊢ f x ∈ v
      rw [mem_preimage]
      -- ⊢ x ∈ f ⁻¹' v
      exact xv

-- 4ª demostración
-- ===============

example : (f '' s)  v = f '' (s  f ⁻¹' v) :=
by
  ext y
  -- y : β
  -- ⊢ y ∈ f '' s ∩ v ↔ y ∈ f '' (s ∩ f ⁻¹' v)
  constructor
  . -- ⊢ y ∈ f '' s ∩ v → y ∈ f '' (s ∩ f ⁻¹' v)
    rintro ⟨⟨x, xs, fxy⟩, yv
    -- yv : y ∈ v
    -- x : α
    -- xs : x ∈ s
    -- fxy : f x = y
    -- ⊢ y ∈ f '' (s ∩ f ⁻¹' v)
    aesop
  . -- ⊢ y ∈ f '' (s ∩ f ⁻¹' v) → y ∈ f '' s ∩ v
    rintro x, xs, xv⟩, fxy
    -- x : α
    -- fxy : f x = y
    -- xs : x ∈ s
    -- xv : x ∈ f ⁻¹' v
    -- ⊢ y ∈ f '' s ∩ v
    aesop

-- 5ª demostración
-- ===============

example : (f '' s)  v = f '' (s  f ⁻¹' v) :=
by ext ; constructor <;> aesop

-- 6ª demostración
-- ===============

example : (f '' s)  v = f '' (s  f ⁻¹' v) :=
(image_inter_preimage f s v).symm

-- Lemas usados
-- ============

-- variable (x : α)
-- variable (a b : Set α)
-- #check (image_inter_preimage f s v : f '' (s ∩ f ⁻¹' v) = f '' s ∩ v)
-- #check (mem_image_of_mem  f : x ∈ a → f x ∈ f '' a)
-- #check (mem_inter : x ∈ a → x ∈ b → x ∈ a ∩ b)
-- #check (mem_preimage : x ∈ f ⁻¹' v ↔ f x ∈ v)

Se puede interactuar con las demostraciones anteriores en Lean 4 Web.

3. Demostraciones con Isabelle/HOL

theory Interseccion_con_la_imagen_inversa
imports Main
begin

(* 1ª demostración *)

lemma "(f ` s) ∩ v = f ` (s ∩ f -` v)"
proof (rule equalityI)
  show "(f ` s) ∩ v ⊆ f ` (s ∩ f -` v)"
  proof (rule subsetI)
    fix y
    assume "y ∈ (f ` s) ∩ v"
    then show "y ∈ f ` (s ∩ f -` v)"
    proof (rule IntE)
      assume "y ∈ v"
      assume "y ∈ f ` s"
      then show "y ∈ f ` (s ∩ f -` v)"
      proof (rule imageE)
        fix x
        assume "x ∈ s"
        assume "y = f x"
        then have "f x ∈ v"
          using ‹y ∈ v› by (rule subst)
        then have "x ∈ f -` v"
          by (rule vimageI2)
        with ‹x ∈ s› have "x ∈ s ∩ f -` v"
          by (rule IntI)
        then have "f x ∈ f ` (s ∩ f -` v)"
          by (rule imageI)
        with ‹y = f x› show "y ∈ f ` (s ∩ f -` v)"
          by (rule ssubst)
      qed
    qed
  qed
next
  show "f ` (s ∩ f -` v) ⊆ (f ` s) ∩ v"
  proof (rule subsetI)
    fix y
    assume "y ∈ f ` (s ∩ f -` v)"
    then show "y ∈ (f ` s) ∩ v"
    proof (rule imageE)
      fix x
      assume "y = f x"
      assume hx : "x ∈ s ∩ f -` v"
      have "y ∈ f ` s"
      proof -
        have "x ∈ s"
          using hx by (rule IntD1)
        then have "f x ∈ f ` s"
          by (rule imageI)
        with ‹y = f x› show "y ∈ f ` s"
          by (rule ssubst)
      qed
      moreover
      have "y ∈ v"
      proof -
        have "x ∈ f -` v"
          using hx by (rule IntD2)
        then have "f x ∈ v"
          by (rule vimageD)
        with ‹y = f x› show "y ∈ v"
          by (rule ssubst)
      qed
      ultimately show "y ∈ (f ` s) ∩ v"
        by (rule IntI)
    qed
  qed
qed

(* 2ª demostración *)

lemma "(f ` s) ∩ v = f ` (s ∩ f -` v)"
proof
  show "(f ` s) ∩ v ⊆ f ` (s ∩ f -` v)"
  proof
    fix y
    assume "y ∈ (f ` s) ∩ v"
    then show "y ∈ f ` (s ∩ f -` v)"
    proof
      assume "y ∈ v"
      assume "y ∈ f ` s"
      then show "y ∈ f ` (s ∩ f -` v)"
      proof
        fix x
        assume "x ∈ s"
        assume "y = f x"
        then have "f x ∈ v" using ‹y ∈ v› by simp
        then have "x ∈ f -` v" by simp
        with ‹x ∈ s› have "x ∈ s ∩ f -` v" by simp
        then have "f x ∈ f ` (s ∩ f -` v)" by simp
        with ‹y = f x› show "y ∈ f ` (s ∩ f -` v)" by simp
      qed
    qed
  qed
next
  show "f ` (s ∩ f -` v) ⊆ (f ` s) ∩ v"
  proof
    fix y
    assume "y ∈ f ` (s ∩ f -` v)"
    then show "y ∈ (f ` s) ∩ v"
    proof
      fix x
      assume "y = f x"
      assume hx : "x ∈ s ∩ f -` v"
      have "y ∈ f ` s"
      proof -
        have "x ∈ s" using hx by simp
        then have "f x ∈ f ` s" by simp
        with ‹y = f x› show "y ∈ f ` s" by simp
      qed
      moreover
      have "y ∈ v"
      proof -
        have "x ∈ f -` v" using hx by simp
        then have "f x ∈ v" by simp
        with ‹y = f x› show "y ∈ v" by simp
      qed
      ultimately show "y ∈ (f ` s) ∩ v" by simp
    qed
  qed
qed

(* 2ª demostración *)

lemma "(f ` s) ∩ v = f ` (s ∩ f -` v)"
proof
  show "(f ` s) ∩ v ⊆ f ` (s ∩ f -` v)"
  proof
    fix y
    assume "y ∈ (f ` s) ∩ v"
    then show "y ∈ f ` (s ∩ f -` v)"
    proof
      assume "y ∈ v"
      assume "y ∈ f ` s"
      then show "y ∈ f ` (s ∩ f -` v)"
      proof
        fix x
        assume "x ∈ s"
        assume "y = f x"
        then show "y ∈ f ` (s ∩ f -` v)"
          using ‹x ∈ s› ‹y ∈ v› by simp
      qed
    qed
  qed
next
  show "f ` (s ∩ f -` v) ⊆ (f ` s) ∩ v"
  proof
    fix y
    assume "y ∈ f ` (s ∩ f -` v)"
    then show "y ∈ (f ` s) ∩ v"
    proof
      fix x
      assume "y = f x"
      assume hx : "x ∈ s ∩ f -` v"
      then have "y ∈ f ` s" using ‹y = f x› by simp
      moreover
      have "y ∈ v" using hx ‹y = f x› by simp
      ultimately show "y ∈ (f ` s) ∩ v" by simp
    qed
  qed
qed

(* 4ª demostración *)

lemma "(f ` s) ∩ v = f ` (s ∩ f -` v)"
  by auto

end