Unión con la imagen inversa
Demostrar con Lean4 que \[ s ∪ f⁻¹[v] ⊆ f⁻¹[f[s] ∪ v] \]
Para ello, completar la siguiente teoría de Lean4:
import Mathlib.Data.Set.Function open Set variable {α β : Type _} variable (f : α → β) variable (s : Set α) variable (v : Set β) example : s ∪ f ⁻¹' v ⊆ f ⁻¹' (f '' s ∪ v) := by sorry
1. Demostración en lenguaje natural
Sea \(x ∈ s ∪ f⁻¹[v]\). Entonces, se pueden dar dos casos.
Caso 1: Supongamos que \(x ∈ s\). Entonces, se tiene \begin{align} &f(x) ∈ f[s] \newline &f(x) ∈ f[s] ∪ v \newline &x ∈ f⁻¹[f[s] ∪ v] \end{align}
Caso 2: Supongamos que x ∈ f⁻¹[v]. Entonces, se tiene \begin{align} &f(x) ∈ v \newline &f(x) ∈ f[s] ∪ v \newline &x ∈ f⁻¹[f[s] ∪ v] \end{align}
2. Demostraciones con Lean4
import Mathlib.Data.Set.Function open Set variable {α β : Type _} variable (f : α → β) variable (s : Set α) variable (v : Set β) -- 1ª demostración -- =============== example : s ∪ f ⁻¹' v ⊆ f ⁻¹' (f '' s ∪ v) := by intros x hx -- x : α -- hx : x ∈ s ∪ f ⁻¹' v -- ⊢ x ∈ f ⁻¹' (f '' s ∪ v) rcases hx with xs | xv . -- xs : x ∈ s have h1 : f x ∈ f '' s := mem_image_of_mem f xs have h2 : f x ∈ f '' s ∪ v := mem_union_left v h1 show x ∈ f ⁻¹' (f '' s ∪ v) exact mem_preimage.mpr h2 . -- xv : x ∈ f ⁻¹' v have h3 : f x ∈ v := mem_preimage.mp xv have h4 : f x ∈ f '' s ∪ v := mem_union_right (f '' s) h3 show x ∈ f ⁻¹' (f '' s ∪ v) exact mem_preimage.mpr h4 -- 2ª demostración -- =============== example : s ∪ f ⁻¹' v ⊆ f ⁻¹' (f '' s ∪ v) := by intros x hx -- x : α -- hx : x ∈ s ∪ f ⁻¹' v -- ⊢ x ∈ f ⁻¹' (f '' s ∪ v) rw [mem_preimage] -- ⊢ f x ∈ f '' s ∪ v rcases hx with xs | xv . -- xs : x ∈ s apply mem_union_left -- ⊢ f x ∈ f '' s apply mem_image_of_mem -- ⊢ x ∈ s exact xs . -- xv : x ∈ f ⁻¹' v apply mem_union_right -- ⊢ f x ∈ v rw [←mem_preimage] -- ⊢ x ∈ f ⁻¹' v exact xv -- 3ª demostración -- =============== example : s ∪ f ⁻¹' v ⊆ f ⁻¹' (f '' s ∪ v) := by intros x hx -- x : α -- hx : x ∈ s ∪ f ⁻¹' v -- ⊢ x ∈ f ⁻¹' (f '' s ∪ v) rcases hx with xs | xv . -- xs : x ∈ s rw [mem_preimage] -- ⊢ f x ∈ f '' s ∪ v apply mem_union_left -- ⊢ f x ∈ f '' s apply mem_image_of_mem -- ⊢ x ∈ s exact xs . -- ⊢ x ∈ f ⁻¹' (f '' s ∪ v) rw [mem_preimage] -- ⊢ f x ∈ f '' s ∪ v apply mem_union_right -- ⊢ f x ∈ v exact xv -- 4ª demostración -- =============== example : s ∪ f ⁻¹' v ⊆ f ⁻¹' (f '' s ∪ v) := by rintro x (xs | xv) -- x : α -- ⊢ x ∈ f ⁻¹' (f '' s ∪ v) . -- xs : x ∈ s left -- ⊢ f x ∈ f '' s exact mem_image_of_mem f xs . -- xv : x ∈ f ⁻¹' v right -- ⊢ f x ∈ v exact xv -- 5ª demostración -- =============== example : s ∪ f ⁻¹' v ⊆ f ⁻¹' (f '' s ∪ v) := by rintro x (xs | xv) -- x : α -- ⊢ x ∈ f ⁻¹' (f '' s ∪ v) . -- xs : x ∈ s exact Or.inl (mem_image_of_mem f xs) . -- xv : x ∈ f ⁻¹' v exact Or.inr xv -- 5ª demostración -- =============== example : s ∪ f ⁻¹' v ⊆ f ⁻¹' (f '' s ∪ v) := by intros x h -- x : α -- h : x ∈ s ∪ f ⁻¹' v -- ⊢ x ∈ f ⁻¹' (f '' s ∪ v) exact Or.elim h (fun xs ↦ Or.inl (mem_image_of_mem f xs)) Or.inr -- 6ª demostración -- =============== example : s ∪ f ⁻¹' v ⊆ f ⁻¹' (f '' s ∪ v) := fun _ h ↦ Or.elim h (fun xs ↦ Or.inl (mem_image_of_mem f xs)) Or.inr -- 7ª demostración -- =============== example : s ∪ f ⁻¹' v ⊆ f ⁻¹' (f '' s ∪ v) := union_preimage_subset s v f -- Lemas usados -- ============ -- variable (x : α) -- variable (t : Set α) -- variable (a b c : Prop) -- #check (Or.elim : a ∨ b → (a → c) → (b → c) → c) -- #check (Or.inl : a → a ∨ b) -- #check (Or.inr : b → a ∨ b) -- #check (mem_image_of_mem f : x ∈ s → f x ∈ f '' s) -- #check (mem_preimage : x ∈ f ⁻¹' v ↔ f x ∈ v) -- #check (mem_union_left t : x ∈ s → x ∈ s ∪ t) -- #check (mem_union_right s : x ∈ t → x ∈ s ∪ t) -- #check (union_preimage_subset s v f : s ∪ f ⁻¹' v ⊆ f ⁻¹' (f '' s ∪ v))
Se puede interactuar con las demostraciones anteriores en Lean 4 Web.
3. Demostraciones con Isabelle/HOL
theory Union_con_la_imagen_inversa imports Main begin (* 1ª demostración *) lemma "s ∪ f -` v ⊆ f -` (f ` s ∪ v)" proof (rule subsetI) fix x assume "x ∈ s ∪ f -` v" then have "f x ∈ f ` s ∪ v" proof (rule UnE) assume "x ∈ s" then have "f x ∈ f ` s" by (rule imageI) then show "f x ∈ f ` s ∪ v" by (rule UnI1) next assume "x ∈ f -` v" then have "f x ∈ v" by (rule vimageD) then show "f x ∈ f ` s ∪ v" by (rule UnI2) qed then show "x ∈ f -` (f ` s ∪ v)" by (rule vimageI2) qed (* 2ª demostración *) lemma "s ∪ f -` v ⊆ f -` (f ` s ∪ v)" proof fix x assume "x ∈ s ∪ f -` v" then have "f x ∈ f ` s ∪ v" proof assume "x ∈ s" then have "f x ∈ f ` s" by simp then show "f x ∈ f ` s ∪ v" by simp next assume "x ∈ f -` v" then have "f x ∈ v" by simp then show "f x ∈ f ` s ∪ v" by simp qed then show "x ∈ f -` (f ` s ∪ v)" by simp qed (* 3ª demostración *) lemma "s ∪ f -` v ⊆ f -` (f ` s ∪ v)" proof fix x assume "x ∈ s ∪ f -` v" then have "f x ∈ f ` s ∪ v" proof assume "x ∈ s" then show "f x ∈ f ` s ∪ v" by simp next assume "x ∈ f -` v" then show "f x ∈ f ` s ∪ v" by simp qed then show "x ∈ f -` (f ` s ∪ v)" by simp qed (* 4ª demostración *) lemma "s ∪ f -` v ⊆ f -` (f ` s ∪ v)" by auto end