Teorema de Cantor
Demostrar con Lean4 el teorema de Cantor; es decir, que no existe ninguna aplicación suprayectiva de un conjunto en el conjunto de sus subconjuntos.
Para ello, completar la siguiente teoría de Lean4:
import Mathlib.Data.Set.Basic open Function variable {α : Type} example : ∀ f : α → Set α, ¬Surjective f := by sorry
1. Demostración en lenguaje natural
Sea \(f\) una función de \(A\) en el conjunto de los subconjuntos \(A\). Tenemos que demostrar que \(f\) no es suprayectiva. Lo haremos por reducción al absurdo. Para ello, supongamos que \(f\) es suprayectiva y consideremos el conjunto \[ S := \{i ∈ A | i ∉ f(i)\} \tag{1} \] Entonces, tiene que existir un \(j ∈ A\) tal que \[ f(j) = S \tag{2} \] Se pueden dar dos casos: \(j ∈ S\) ó \(j ∉ S\). Veamos que ambos son imposibles.
Caso 1: Supongamos que \(j ∈ S\). Entonces, por (1) \[ j ∉ f(j) \] y, por (2), \[ j ∉ S \] que es una contradicción.
Caso 2: Supongamos que \(j ∉ S\). Entonces, por (1) \[ j ∈ f(j) \] y, por (2), \[ j ∈ S \] que es una contradicción.
2. Demostraciones con Lean4
import Mathlib.Data.Set.Basic open Function variable {α : Type} -- 1ª demostración -- =============== example : ∀ f : α → Set α, ¬Surjective f := by intros f hf -- f : α → Set α -- hf : Surjective f -- ⊢ False let S := {i | i ∉ f i} unfold Surjective at hf -- hf : ∀ (b : Set α), ∃ a, f a = b rcases hf S with ⟨j, hj⟩ -- j : α -- hj : f j = S by_cases h: j ∈ S . -- h : j ∈ S simp at h -- h : ¬j ∈ f j apply h -- ⊢ j ∈ f j rw [hj] -- ⊢ j ∈ S exact h . -- h : ¬j ∈ S apply h -- ⊢ j ∈ S rw [←hj] at h -- h : ¬j ∈ f j exact h -- 2ª demostración -- =============== example : ∀ f : α → Set α, ¬ Surjective f := by intros f hf -- f : α → Set α -- hf : Surjective f -- ⊢ False let S := {i | i ∉ f i} rcases hf S with ⟨j, hj⟩ -- j : α -- hj : f j = S by_cases h: j ∈ S . -- h : j ∈ S apply h -- ⊢ j ∈ f j rwa [hj] . -- h : ¬j ∈ S apply h rwa [←hj] at h -- 3ª demostración -- =============== example : ∀ f : α → Set α, ¬ Surjective f := by intros f hf -- f : α → Set α -- hf : Surjective f -- ⊢ False let S := {i | i ∉ f i} rcases hf S with ⟨j, hj⟩ -- j : α -- hj : f j = S have h : (j ∈ S) = (j ∉ S) := calc (j ∈ S) = (j ∉ f j) := Set.mem_setOf_eq _ = (j ∉ S) := congrArg (j ∉ .) hj exact iff_not_self (iff_of_eq h) -- 4ª demostración -- =============== example : ∀ f : α → Set α, ¬ Surjective f := cantor_surjective -- Lemas usados -- ============ -- variable (x : α) -- variable (p : α → Prop) -- variable (a b : Prop) -- #check (Set.mem_setOf_eq : (x ∈ {y : α | p y}) = p x) -- #check (iff_of_eq : a = b → (a ↔ b)) -- #check (iff_not_self : ¬(a ↔ ¬a)) -- #check (cantor_surjective : ∀ f : α → Set α, ¬ Surjective f)
Se puede interactuar con las demostraciones anteriores en Lean 4 Web.
3. Demostraciones con Isabelle/HOL
theory Teorema_de_Cantor imports Main begin (* 1ª demostración *) theorem fixes f :: "'α ⇒ 'α set" shows "¬ surj f" proof (rule notI) assume "surj f" let ?S = "{i. i ∉ f i}" have "∃ j. ?S = f j" using ‹surj f› by (simp only: surjD) then obtain j where "?S = f j" by (rule exE) show False proof (cases "j ∈ ?S") assume "j ∈ ?S" then have "j ∉ f j" by (rule CollectD) moreover have "j ∈ f j" using ‹?S = f j› ‹j ∈ ?S› by (rule subst) ultimately show False by (rule notE) next assume "j ∉ ?S" with ‹?S = f j› have "j ∉ f j" by (rule subst) then have "j ∈ ?S" by (rule CollectI) with ‹j ∉ ?S› show False by (rule notE) qed qed (* 2ª demostración *) theorem fixes f :: "'α ⇒ 'α set" shows "¬ surj f" proof (rule notI) assume "surj f" let ?S = "{i. i ∉ f i}" have "∃ j. ?S = f j" using ‹surj f› by (simp only: surjD) then obtain j where "?S = f j" by (rule exE) have "j ∉ ?S" proof (rule notI) assume "j ∈ ?S" then have "j ∉ f j" by (rule CollectD) with ‹?S = f j› have "j ∉ ?S" by (rule ssubst) then show False using ‹j ∈ ?S› by (rule notE) qed moreover have "j ∈ ?S" proof (rule CollectI) show "j ∉ f j" proof (rule notI) assume "j ∈ f j" with ‹?S = f j› have "j ∈ ?S" by (rule ssubst) then have "j ∉ f j" by (rule CollectD) then show False using ‹j ∈ f j› by (rule notE) qed qed ultimately show False by (rule notE) qed (* 3ª demostración *) theorem fixes f :: "'α ⇒ 'α set" shows "¬ surj f" proof assume "surj f" let ?S = "{i. i ∉ f i}" have "∃ j. ?S = f j" using ‹surj f› by (simp only: surjD) then obtain j where "?S = f j" by (rule exE) have "j ∉ ?S" proof assume "j ∈ ?S" then have "j ∉ f j" by simp with ‹?S = f j› have "j ∉ ?S" by simp then show False using ‹j ∈ ?S› by simp qed moreover have "j ∈ ?S" proof show "j ∉ f j" proof assume "j ∈ f j" with ‹?S = f j› have "j ∈ ?S" by simp then have "j ∉ f j" by simp then show False using ‹j ∈ f j› by simp qed qed ultimately show False by simp qed (* 4ª demostración *) theorem fixes f :: "'α ⇒ 'α set" shows "¬ surj f" proof (rule notI) assume "surj f" let ?S = "{i. i ∉ f i}" have "∃ j. ?S = f j" using ‹surj f› by (simp only: surjD) then obtain j where "?S = f j" by (rule exE) have "j ∈ ?S = (j ∉ f j)" by (rule mem_Collect_eq) also have "… = (j ∉ ?S)" by (simp only: ‹?S = f j›) finally show False by (simp only: simp_thms(10)) qed (* 5ª demostración *) theorem fixes f :: "'α ⇒ 'α set" shows "¬ surj f" proof assume "surj f" let ?S = "{i. i ∉ f i}" have "∃ j. ?S = f j" using ‹surj f› by (simp only: surjD) then obtain j where "?S = f j" by (rule exE) have "j ∈ ?S = (j ∉ f j)" by simp also have "… = (j ∉ ?S)" using ‹?S = f j› by simp finally show False by simp qed (* 6ª demostración *) theorem fixes f :: "'α ⇒ 'α set" shows "¬ surj f" unfolding surj_def by best end