Skip to main content

Si G un grupo y a ∈ G, entonces (a⁻¹)⁻¹ = a

Demostrar con Lean4 que si \(G\) un grupo y \(a ∈ G\), entonces \[(a⁻¹)⁻¹ = a\]

Para ello, completar la siguiente teoría de Lean4:

import Mathlib.Algebra.Group.Basic

variable {G : Type} [Group G]
variable {a : G}

example : (a⁻¹)⁻¹ = a :=
sorry

1. Demostración en lenguaje natural

Por la siguiente cadena de igualdades \begin{align} (a⁻¹)⁻¹ &= (a⁻¹)⁻¹·1 &&\text{[porque \(1\) es neutro]} \newline &= (a⁻¹)⁻¹·(a⁻¹·a) &&\text{[porque \(a⁻¹\) es el inverso de \(a\)]} \newline &= ((a⁻¹)⁻¹·a⁻¹)·a &&\text{[por la asociativa]} \newline &= 1·a &&\text{[porque \((a⁻¹)⁻¹\) es el inverso de \(a⁻¹\)]} \newline &= a &&\text{[porque \(1\) es neutro]} \end{align}

2. Demostraciones con Lean4

import Mathlib.Algebra.Group.Basic

variable {G : Type} [Group G]
variable {a : G}

-- 1ª demostración
-- ===============

example : (a⁻¹)⁻¹ = a :=
calc (a⁻¹)⁻¹
     = (a⁻¹)⁻¹ * 1         := (mul_one (a⁻¹)⁻¹).symm
   _ = (a⁻¹)⁻¹ * (a⁻¹ * a) := congrArg ((a⁻¹)⁻¹ * .) (inv_mul_cancel a).symm
   _ = ((a⁻¹)⁻¹ * a⁻¹) * a := (mul_assoc _ _ _).symm
   _ = 1 * a               := congrArg (. * a) (inv_mul_cancel a⁻¹)
   _ = a                   := one_mul a

-- 2ª demostración
-- ===============

example : (a⁻¹)⁻¹ = a :=
calc (a⁻¹)⁻¹
     = (a⁻¹)⁻¹ * 1         := by simp only [mul_one]
   _ = (a⁻¹)⁻¹ * (a⁻¹ * a) := by simp only [inv_mul_cancel]
   _ = ((a⁻¹)⁻¹ * a⁻¹) * a := by simp only [mul_assoc]
   _ = 1 * a               := by simp only [inv_mul_cancel]
   _ = a                   := by simp only [one_mul]

-- 3ª demostración
-- ===============

example : (a⁻¹)⁻¹ = a :=
calc (a⁻¹)⁻¹
     = (a⁻¹)⁻¹ * 1         := by simp
   _ = (a⁻¹)⁻¹ * (a⁻¹ * a) := by simp
   _ = ((a⁻¹)⁻¹ * a⁻¹) * a := by simp
   _ = 1 * a               := by simp
   _ = a                   := by simp

-- 4ª demostración
-- ===============

example : (a⁻¹)⁻¹ = a :=
by
  apply mul_eq_one_iff_inv_eq.mp
  -- ⊢ a⁻¹ * a = 1
  exact inv_mul_cancel a

-- 5ª demostración
-- ===============

example : (a⁻¹)⁻¹ = a :=
mul_eq_one_iff_inv_eq.mp (inv_mul_cancel a)

-- 6ª demostración
-- ===============

example : (a⁻¹)⁻¹ = a:=
inv_inv a

-- 7ª demostración
-- ===============

example : (a⁻¹)⁻¹ = a:=
by simp

-- Lemas usados
-- ============

-- variable (b c : G)
-- #check (inv_inv a : (a⁻¹)⁻¹ = a)
-- #check (inv_mul_cancel a : a⁻¹  * a = 1)
-- #check (mul_assoc a b c : (a * b) * c = a * (b * c))
-- #check (mul_eq_one_iff_inv_eq : a * b = 1 ↔ a⁻¹ = b)
-- #check (mul_one a : a * 1 = a)
-- #check (one_mul a : 1 * a = a)

Se puede interactuar con las demostraciones anteriores en Lean 4 Web.

3. Demostraciones con Isabelle/HOL

theory Inverso_del_inverso_en_grupos
imports Main
begin

context group
begin

(* 1ª demostración *)

lemma "inverse (inverse a) = a"
proof -
  have "inverse (inverse a) =
        (inverse (inverse a)) * 1"
    by (simp only: right_neutral)
  also have "… = inverse (inverse a) * (inverse a * a)"
    by (simp only: left_inverse)
  also have "… = (inverse (inverse a) * inverse a) * a"
    by (simp only: assoc)
  also have "… = 1 * a"
    by (simp only: left_inverse)
  also have "… = a"
    by (simp only: left_neutral)
  finally show "inverse (inverse a) = a"
    by this
qed

(* 2ª demostración *)

lemma "inverse (inverse a) = a"
proof -
  have "inverse (inverse a) =
        (inverse (inverse a)) * 1"                       by simp
  also have "… = inverse (inverse a) * (inverse a * a)" by simp
  also have "… = (inverse (inverse a) * inverse a) * a" by simp
  also have "… = 1 * a"                                 by simp
  finally show "inverse (inverse a) = a"                 by simp
qed

(* 3ª demostración *)

lemma "inverse (inverse a) = a"
proof (rule inverse_unique)
  show "inverse a * a = 1"
    by (simp only: left_inverse)
qed

(* 4ª demostración *)

lemma "inverse (inverse a) = a"
proof (rule inverse_unique)
  show "inverse a * a = 1" by simp
qed

(* 5ª demostración *)

lemma "inverse (inverse a) = a"
  by (rule inverse_unique) simp

(* 6ª demostración *)

lemma "inverse (inverse a) = a"
  by (simp only: inverse_inverse)

(* 7ª demostración *)

lemma "inverse (inverse a) = a"
  by simp

end

end