Si G es un grupo y a, b, c ∈ G tales que a·b = a·c, entonces b = c
Demostrar con Lean4 que si \(G\) es un grupo y \(a, b, c ∈ G\) tales que \(a·b = a·c\), entonces \(b = c\).
Para ello, completar la siguiente teoría de Lean4:
import Mathlib.Algebra.Group.Basic variable {G : Type} [Group G] variable {a b c : G} example (h: a * b = a * c) : b = c := sorry
1. Demostración en lenguaje natural
Por la siguiente cadena de igualdades \begin{align} b &= 1·b &&\text{[porque \(1\) es neutro]} \newline &= (a⁻¹·a)·b &&\text{[porque \(a⁻¹\) es el inverso de \(a\)]} \newline &= a⁻¹·(a·b) &&\text{[por la asociativa]} \newline &= a⁻¹·(a·c) &&\text{[por la hipótesis]} \newline &= (a⁻¹·a)·c &&\text{[por la asociativa]} \newline &= 1·c &&\text{[porque \(a⁻¹\) es el inverso de \(a\)]} \newline &= c &&\text{[porque 1 es neutro]} \end{align}
2. Demostraciones con Lean4
import Mathlib.Algebra.Group.Basic variable {G : Type} [Group G] variable {a b c : G} -- 1ª demostración -- =============== example (h: a * b = a * c) : b = c := calc b = 1 * b := (one_mul b).symm _ = (a⁻¹ * a) * b := congrArg (. * b) (inv_mul_cancel a).symm _ = a⁻¹ * (a * b) := mul_assoc a⁻¹ a b _ = a⁻¹ * (a * c) := congrArg (a⁻¹ * .) h _ = (a⁻¹ * a) * c := (mul_assoc a⁻¹ a c).symm _ = 1 * c := congrArg (. * c) (inv_mul_cancel a) _ = c := one_mul c -- 2ª demostración -- =============== example (h: a * b = a * c) : b = c := calc b = 1 * b := by rw [one_mul] _ = (a⁻¹ * a) * b := by rw [inv_mul_cancel] _ = a⁻¹ * (a * b) := by rw [mul_assoc] _ = a⁻¹ * (a * c) := by rw [h] _ = (a⁻¹ * a) * c := by rw [mul_assoc] _ = 1 * c := by rw [inv_mul_cancel] _ = c := by rw [one_mul] -- 3ª demostración -- =============== example (h: a * b = a * c) : b = c := calc b = 1 * b := by simp _ = (a⁻¹ * a) * b := by simp _ = a⁻¹ * (a * b) := by simp _ = a⁻¹ * (a * c) := by simp [h] _ = (a⁻¹ * a) * c := by simp _ = 1 * c := by simp _ = c := by simp -- 4ª demostración -- =============== example (h: a * b = a * c) : b = c := calc b = a⁻¹ * (a * b) := by simp _ = a⁻¹ * (a * c) := by simp [h] _ = c := by simp -- 4ª demostración -- =============== example (h: a * b = a * c) : b = c := mul_left_cancel h -- 5ª demostración -- =============== example (h: a * b = a * c) : b = c := by aesop -- Lemas usados -- ============ -- #check (inv_mul_cancel a : a⁻¹ * a = 1) -- #check (mul_assoc a b c : (a * b) * c = a * (b * c)) -- #check (mul_left_cancel : a * b = a * c → b = c) -- #check (one_mul a : 1 * a = a)
Se puede interactuar con las demostraciones anteriores en Lean 4 Web.
3. Demostraciones con Isabelle/HOL
theory Propiedad_cancelativa_en_grupos imports Main begin context group begin (* 1ª demostración *) lemma assumes "a * b = a * c" shows "b = c" proof - have "b = 1 * b" by (simp only: left_neutral) also have "… = (inverse a * a) * b" by (simp only: left_inverse) also have "… = inverse a * (a * b)" by (simp only: assoc) also have "… = inverse a * (a * c)" by (simp only: ‹a * b = a * c›) also have "… = (inverse a * a) * c" by (simp only: assoc) also have "… = 1 * c" by (simp only: left_inverse) also have "… = c" by (simp only: left_neutral) finally show "b = c" by this qed (* 2ª demostración *) lemma assumes "a * b = a * c" shows "b = c" proof - have "b = 1 * b" by simp also have "… = (inverse a * a) * b" by simp also have "… = inverse a * (a * b)" by (simp only: assoc) also have "… = inverse a * (a * c)" using ‹a * b = a * c› by simp also have "… = (inverse a * a) * c" by (simp only: assoc) also have "… = 1 * c" by simp finally show "b = c" by simp qed (* 3ª demostración *) lemma assumes "a * b = a * c" shows "b = c" proof - have "b = (inverse a * a) * b" by simp also have "… = inverse a * (a * b)" by (simp only: assoc) also have "… = inverse a * (a * c)" using ‹a * b = a * c› by simp also have "… = (inverse a * a) * c" by (simp only: assoc) finally show "b = c" by simp qed (* 4ª demostración *) lemma assumes "a * b = a * c" shows "b = c" proof - have "inverse a * (a * b) = inverse a * (a * c)" by (simp only: ‹a * b = a * c›) then have "(inverse a * a) * b = (inverse a * a) * c" by (simp only: assoc) then have "1 * b = 1 * c" by (simp only: left_inverse) then show "b = c" by (simp only: left_neutral) qed (* 5ª demostración *) lemma assumes "a * b = a * c" shows "b = c" proof - have "inverse a * (a * b) = inverse a * (a * c)" by (simp only: ‹a * b = a * c›) then have "(inverse a * a) * b = (inverse a * a) * c" by (simp only: assoc) then have "1 * b = 1 * c" by (simp only: left_inverse) then show "b = c" by (simp only: left_neutral) qed (* 6ª demostración *) lemma assumes "a * b = a * c" shows "b = c" proof - have "inverse a * (a * b) = inverse a * (a * c)" using ‹a * b = a * c› by simp then have "(inverse a * a) * b = (inverse a * a) * c" by (simp only: assoc) then have "1 * b = 1 * c" by simp then show "b = c" by simp qed (* 7ª demostración *) lemma assumes "a * b = a * c" shows "b = c" using assms by (simp only: left_cancel) end end