Skip to main content

Brahmagupta-Fibonacci identity

Prove the Brahmagupta-Fibonacci identity \[ (a^2 + b^2) * (c^2 + d^2) = (ac - bd)^2 + (ad + bc)^2 \]

To do this, complete the following Lean4 theory:

import Mathlib.Data.Real.Basic
import Mathlib.Tactic

variable (a b c d : )

example : (a^2 + b^2) * (c^2 + d^2) = (a*c - b*d)^2 + (a*d + b*c)^2 :=
sorry

1. Proof in natural language

The proof follows from the following chain of equalities: \begin{align} (a^2 + b^2)(c^2 + d^2) &= a^2(c^2 + d^2) + b^2(c^2 + d^2) \newline &= (a^2c^2 + a^2d^2) + (b^2c^2 + b^2d^2) \newline &= ((ac)^2 + (bd)^2) + ((ad)^2 + (bc)^2) \newline &= ((ac)^2 - 2acbd + (bd)^2) + ((ad)^2 + 2adbc + (bc)^2) \newline &= (ac - bd)^2 + (ad + bc)^2 \end{align}

2. Proofs with Lean4

import Mathlib.Data.Real.Basic
import Mathlib.Tactic

variable (a b c d : )

-- Proof 1
-- =======

example : (a^2 + b^2) * (c^2 + d^2) = (a*c - b*d)^2 + (a*d + b*c)^2 :=
calc (a^2 + b^2) * (c^2 + d^2)
     = a^2 * (c^2 + d^2) + b^2 * (c^2 + d^2)
         := right_distrib (a^2) (b^2) (c^2 + d^2)
   _ = (a^2*c^2 + a^2*d^2) + b^2 * (c^2 + d^2)
         := congr_arg₂ (. + .) (left_distrib (a^2) (c^2) (d^2)) rfl
   _ = (a^2*c^2 + a^2*d^2) + (b^2*c^2 + b^2*d^2)
         := congr_arg₂ (. + .) rfl (left_distrib (b^2) (c^2) (d^2))
   _ = ((a*c)^2 + (b*d)^2) + ((a*d)^2 + (b*c)^2)
         := by ring
   _ = ((a*c)^2 - 2*a*c*b*d + (b*d)^2) + ((a*d)^2 + 2*a*d*b*c + (b*c)^2)
         := by ring
   _ = (a*c - b*d)^2 + (a*d + b*c)^2
         := by ring

-- Proof 2
-- =======

example : (a^2 + b^2) * (c^2 + d^2) = (a*c - b*d)^2 + (a*d + b*c)^2 :=
by ring

-- Used lemmas
-- ===========

-- variable (f : ℝ → ℝ → ℝ)
-- variable (x x' y y' : ℝ)
-- #check (congr_arg₂ f : x = x' → y = y' → f x y = f x' y')
-- #check (left_distrib a b c : a * (b + c) = a * b + a * c)
-- #check (right_distrib a b c: (a + b) * c = a * c + b * c)

You can interact with the previous proofs at Lean 4 Web.

3. Proofs with Isabelle/HOL

theory "Brahmagupta-Fibonacci_identity"
imports Main HOL.Real
begin

(* Proof 1 *)
lemma
  fixes a b c d :: real
  shows "(a^2 + b^2) * (c^2 + d^2) = (a*c - b*d)^2 + (a*d + b*c)^2"
proof -
  have "(a^2 + b^2) * (c^2 + d^2) = a^2 * (c^2 + d^2) + b^2 * (c^2 + d^2)"
    by (simp only: distrib_right)
  also have "… = (a^2*c^2 + a^2*d^2) + b^2 * (c^2 + d^2)"
    by (simp only: distrib_left)
  also have "… = (a^2*c^2 + a^2*d^2) + (b^2*c^2 + b^2*d^2)"
    by (simp only: distrib_left)
  also have "… = ((a*c)^2 + (b*d)^2) + ((a*d)^2 + (b*c)^2)"
    by algebra
  also have "… = ((a*c)^2 - 2*a*c*b*d + (b*d)^2) +
                  ((a*d)^2 + 2*a*d*b*c + (b*c)^2)"
    by algebra
  also have "… = (a*c - b*d)^2 + (a*d + b*c)^2"
    by algebra
  finally show "(a^2 + b^2) * (c^2 + d^2) = (a*c - b*d)^2 + (a*d + b*c)^2" .
qed

(* Proof 2 *)
lemma
  fixes a b c d :: real
  shows "(a^2 + b^2) * (c^2 + d^2) = (a*c - b*d)^2 + (a*d + b*c)^2"
by algebra

end

Note: The code for the previous proofs can be found in the Calculemus repository on GitHub.