If the limit of the sequence u(n) is a and c ∈ ℝ, then the limit of u(n)c is ac
In Lean, a sequence \(u_₀, u_₁, u_₂, ... \) can be represented by a function \(u : ℕ → ℝ\) such that \(u(n)\) is \(u_n\).
It is defined that \(a\) is the limit of the sequence \(u\), by
def limite : (ℕ → ℝ) → ℝ → Prop := fun u c ↦ ∀ ε > 0, ∃ N, ∀ n ≥ N, |u n - c| < ε
Prove that if the limit of \(u_n\) is \(a\), then the limit of \(u_nc\) is \(ac\).
import Mathlib.Data.Real.Basic import Mathlib.Tactic variable (u : ℕ → ℝ) variable (a c : ℝ) def TendsTo : (ℕ → ℝ) → ℝ → Prop := fun u c ↦ ∀ ε > 0, ∃ N, ∀ n ≥ N, |u n - c| < ε example (h : TendsTo u a) : TendsTo (fun n ↦ (u n) * c) (a * c) := by sorry
1. Proof in natural language
In a previous exercise proofs have been presented of the following property
If \(\lim_{n \to \infty} u_n = a\) and \(c ∈ ℝ\), then \(\lim_{n \to \infty} cu_n = ca\).
From this property, it is demonstrated that
If \(\lim_{n \to \infty} u_n = a\) and \(c ∈ ℝ\), then \(\lim_{n \to \infty} u_nc = ac\).
Indeed, suppose that \[ \lim_{n \to \infty} u_n = a \] Then, by the previous property, \[ \lim_{n \to \infty} cu_n = ca \tag{1} \] But, by the commutativity of the product, we have that \[ (∀n ∈ ℕ)[cu_n = u_nc] \tag{2} \] \[ ca = ac \tag{3} \] By (1), (2) and (3) we have that \[ \lim_{n \to \infty} u_nc = ac \]
2. Proofs with Lean4
import Mathlib.Data.Real.Basic import Mathlib.Tactic variable (u : ℕ → ℝ) variable (a c : ℝ) def TendsTo : (ℕ → ℝ) → ℝ → Prop := fun u c ↦ ∀ ε > 0, ∃ N, ∀ n ≥ N, |u n - c| < ε -- The following theorem, demonstrated in a previous exercise, is used. theorem tendsTo_const_mul (h : TendsTo u a) : TendsTo (fun n ↦ c * (u n)) (c * a) := by by_cases hc : c = 0 . -- hc : c = 0 subst hc -- ⊢ TendsTo (fun n => 0 * u n) (0 * a) intros ε hε -- ε : ℝ -- hε : ε > 0 -- ⊢ ∃ N, ∀ (n : ℕ), n ≥ N → |(fun n => 0 * u n) n - 0 * a| < ε aesop . -- hc : ¬c = 0 intros ε hε -- ε : ℝ -- hε : ε > 0 -- ⊢ ∃ N, ∀ (n : ℕ), n ≥ N → |(fun n => c * u n) n - c * a| < ε have hc' : 0 < |c| := abs_pos.mpr hc have hεc : 0 < ε / |c| := div_pos hε hc' specialize h (ε/|c|) hεc -- h : ∃ N, ∀ (n : ℕ), n ≥ N → |u n - a| < ε / |c| cases' h with N hN -- N : ℕ -- hN : ∀ (n : ℕ), n ≥ N → |u n - a| < ε / |c| use N -- ⊢ ∀ (n : ℕ), n ≥ N → |(fun n => c * u n) n - c * a| < ε intros n hn -- n : ℕ -- hn : n ≥ N -- ⊢ |(fun n => c * u n) n - c * a| < ε specialize hN n hn -- hN : |u n - a| < ε / |c| dsimp only calc |c * u n - c * a| = |c * (u n - a)| := congr_arg abs (mul_sub c (u n) a).symm _ = |c| * |u n - a| := abs_mul c (u n - a) _ < |c| * (ε / |c|) := (mul_lt_mul_left hc').mpr hN _ = ε := mul_div_cancel₀ ε (ne_of_gt hc') example (h : TendsTo u a) : TendsTo (fun n ↦ (u n) * c) (a * c) := by have h1 : ∀ n, (u n) * c = c * (u n) := by intro -- n : ℕ -- ⊢ u n * c = c * u n ring have h2 : a * c = c * a := mul_comm a c simp [h1,h2] -- ⊢ TendsTo (fun n => c * u n) (c * a) exact tendsTo_const_mul u a c h -- Used lemmas -- =========== -- variable (b c : ℝ) -- #check (abs_mul a b : |a * b| = |a| * |b|) -- #check (abs_pos.mpr : a ≠ 0 → 0 < |a|) -- #check (div_pos : 0 < a → 0 < b → 0 < a / b) -- #check (lt_div_iff₀' : 0 < c → (a < b / c ↔ c * a < b)) -- #check (mul_comm a b : a * b = b * a) -- #check (mul_div_cancel₀ a : b ≠ 0 → b * (a / b) = a) -- #check (mul_lt_mul_left : 0 < a → (a * b < a * c ↔ b < c)) -- #check (mul_sub a b c : a * (b - c) = a * b - a * c)
You can interact with the previous proofs at Lean 4 Web.