Ir al contenido principal

Duplicación de cada elemento


Definir la función

duplicaElementos :: [a] -> [a]

tal que (duplicaElementos xs) es la lista obtenida duplicando cada elemento de xs. Por ejemplo,

duplicaElementos [3,2,5]    ==  [3,3,2,2,5,5]
duplicaElementos "Haskell"  ==  "HHaasskkeellll"

Nota: Escribir las soluciones en Haskell, en Python y en Common Lisp.

Leer más…

Sistema factorádico de numeración


El sistema factorádico es un sistema numérico basado en factoriales en el que el n-ésimo dígito, empezando desde la derecha, debe ser multiplicado por n! Por ejemplo, el número "341010" en el sistema factorádico es 463 en el sistema decimal ya que

3×5! + 4×4! + 1×3! + 0×2! + 1×1! + 0×0! = 463

En este sistema numérico, el dígito de más a la derecha es siempre 0, el segundo 0 o 1, el tercero 0,1 o 2 y así sucesivamente.

Con los dígitos del 0 al 9 el mayor número que podemos codificar es el 10!-1 = 3628799. En cambio, si lo ampliamos con las letras A a Z podemos codificar hasta 36!-1 = 37199332678990121746799944815083519999999910.

Definir las funciones

factoradicoAdecimal :: String -> Integer
decimalAfactoradico :: Integer -> String

tales que

  • (factoradicoAdecimal cs) es el número decimal correspondiente al número factorádico cs. Por ejemplo,
λ> factoradicoAdecimal "341010"
463
λ> factoradicoAdecimal "2441000"
2022
λ> factoradicoAdecimal "A0000000000"
36288000
λ> map factoradicoAdecimal ["10","100","110","200","210","1000","1010","1100","1110","1200"]
[1,2,3,4,5,6,7,8,9,10]
λ> factoradicoAdecimal "3KXWVUTSRQPONMLKJIHGFEDCBA9876543210"
37199332678990121746799944815083519999999
  • (decimalAfactoradico n) es el número factorádico correpondiente al número decimal n. Por ejemplo,
λ> decimalAfactoradico 463
"341010"
λ> decimalAfactoradico 2022
"2441000"
λ> decimalAfactoradico 36288000
"A0000000000"
λ> map decimalAfactoradico [1..10]
["10","100","110","200","210","1000","1010","1100","1110","1200"]
λ> decimalAfactoradico 37199332678990121746799944815083519999999
"3KXWVUTSRQPONMLKJIHGFEDCBA9876543210"

Comprobar con QuickCheck que, para cualquier entero positivo n,

factoradicoAdecimal (decimalAfactoradico n) == n

Nota: Escribir las soluciones en Haskell, en Python y en Common Lisp.

Leer más…

Suma de cadenas


Definir la función

sumaCadenas :: String -> String -> String

tal que (sumaCadenas xs ys) es la cadena formada por el número entero que es la suma de los números enteros cuyas cadenas que lo representan son xs e ys; además, se supone que la cadena vacía representa al cero. Por ejemplo,

sumaCadenas "2"   "6"  == "8"
sumaCadenas "14"  "2"  == "16"
sumaCadenas "14"  "-5" == "9"
sumaCadenas "-14" "-5" == "-19"
sumaCadenas "5"   "-5" == "0"
sumaCadenas ""    "5"  == "5"
sumaCadenas "6"   ""   == "6"
sumaCadenas ""    ""   == "0"

Nota: Escribir las soluciones en Haskell, en Python y en Common Lisp.

Leer más…

Cuadrado más cercano


Definir la función

cuadradoCercano :: Integer -> Integer

tal que (cuadradoCercano n) es el número cuadrado más cercano a n, donde n es un entero positivo. Por ejemplo,

cuadradoCercano 2       == 1
cuadradoCercano 6       == 4
cuadradoCercano 8       == 9
cuadradoCercano (10^46) == 10000000000000000000000000000000000000000000000

Nota: Escribir las soluciones en Haskell, en Python y en Common Lisp.

Leer más…

Divisores de un número con final dado


Definir la función

divisoresConFinal :: Integer -> Integer -> [Integer]

tal que (divisoresConFinal n m) es la lista de los divisores de n cuyos dígitos finales coincide con m. Por ejemplo,

divisoresConFinal 84 4    ==  [4,14,84]
divisoresConFinal 720 20  ==  [20,120,720]

Leer más…

Órbita prima


La órbita prima de un número n es la sucesión construida de la siguiente forma:

  • si n es compuesto su órbita no tiene elementos
  • si n es primo, entonces n está en su órbita; además, sumamos n y sus dígitos, si el resultado es un número primo repetimos el proceso hasta obtener un número compuesto.

Por ejemplo, con el 11 podemos repetir el proceso dos veces

13 = 11+1+1
17 = 13+1+3

Así, la órbita prima de 11 es 11, 13, 17.

Definir la función

orbita :: Integer -> [Integer]

tal que (orbita n) es la órbita prima de n. Por ejemplo,

orbita 11 == [11,13,17]
orbita 59 == [59,73,83]

Calcular el menor número cuya órbita prima tiene más de 3 elementos.

Leer más…

Ordenada cíclicamente


Se dice que una sucesión x(1), ..., x(n) está ordenada cíclicamente si existe un índice i tal que la sucesión

x(i), x(i+1), ..., x(n), x(1), ..., x(i-1)

está ordenada creciente de forma estricta.

Definir la función

ordenadaCiclicamente :: Ord a => [a] -> Maybe Int

tal que (ordenadaCiclicamente xs) es el índice a partir del cual está ordenada, si la lista está ordenado cíclicamente y Nothing en caso contrario. Por ejemplo,

ordenadaCiclicamente [1,2,3,4]      ==  Just 0
ordenadaCiclicamente [5,8,1,3]      ==  Just 2
ordenadaCiclicamente [4,6,7,5,1,3]  ==  Nothing
ordenadaCiclicamente [1,0,3,2]      ==  Nothing
ordenadaCiclicamente [1,2,0]        ==  Just 2
ordenadaCiclicamente "cdeab"        ==  Just 3

Nota: Se supone que el argumento es una lista no vacía sin elementos repetidos.

Leer más…

Eliminación de las ocurrencias aisladas


Definir la función

eliminaAisladas :: Eq a => a -> [a] -> [a]

tal que (eliminaAisladas x ys) es la lista obtenida eliminando de ys las ocurrencias aisladas de x (es decir, aquellas ocurrencias de x tales que su elemento anterior y posterior son distintos de x). Por ejemplo,

eliminaAisladas 'X' ""                  == ""
eliminaAisladas 'X' "X"                 == ""
eliminaAisladas 'X' "XX"                == "XX"
eliminaAisladas 'X' "XXX"               == "XXX"
eliminaAisladas 'X' "abcd"              == "abcd"
eliminaAisladas 'X' "Xabcd"             == "abcd"
eliminaAisladas 'X' "XXabcd"            == "XXabcd"
eliminaAisladas 'X' "XXXabcd"           == "XXXabcd"
eliminaAisladas 'X' "abcdX"             == "abcd"
eliminaAisladas 'X' "abcdXX"            == "abcdXX"
eliminaAisladas 'X' "abcdXXX"           == "abcdXXX"
eliminaAisladas 'X' "abXcd"             == "abcd"
eliminaAisladas 'X' "abXXcd"            == "abXXcd"
eliminaAisladas 'X' "abXXXcd"           == "abXXXcd"
eliminaAisladas 'X' "XabXcdX"           == "abcd"
eliminaAisladas 'X' "XXabXXcdXX"        == "XXabXXcdXX"
eliminaAisladas 'X' "XXXabXXXcdXXX"     == "XXXabXXXcdXXX"
eliminaAisladas 'X' "XabXXcdXeXXXfXx"   == "abXXcdeXXXfx"

Leer más…

Emparejamiento de árboles


Los árboles se pueden representar mediante el siguiente tipo de datos

data Arbol a = N a [Arbol a]
  deriving (Show, Eq)

Por ejemplo, los árboles

  1               3
 / \             /|\
6   3           / | \
    |          5  4  7
    5          |     /\
               6    2  1

se representan por

ej1, ej2 :: Arbol Int
ej1 = N 1 [N 6 [],N 3 [N 5 []]]
ej2 = N 3 [N 5 [N 6 []], N 4 [], N 7 [N 2 [], N 1 []]]

Definir la función

emparejaArboles :: (a -> b -> c) -> Arbol a -> Arbol b -> Arbol c

tal que (emparejaArboles f a1 a2) es el árbol obtenido aplicando la función f a los elementos de los árboles a1 y a2 que se encuentran en la misma posición. Por ejemplo,

λ> emparejaArboles (+) (N 1 [N 2 [], N 3[]]) (N 1 [N 6 []])
N 2 [N 8 []]
λ> emparejaArboles (+) ej1 ej2
N 4 [N 11 [],N 7 []]
λ> emparejaArboles (+) ej1 ej1
N 2 [N 12 [],N 6 [N 10 []]]

Leer más…

Separación por posición


Definir la función

particion :: [a] -> ([a],[a])

tal que (particion xs) es el par cuya primera componente son los elementos de xs en posiciones pares y su segunda componente son los restantes elementos. Por ejemplo,

particion [3,5,6,2]    ==  ([3,6],[5,2])
particion [3,5,6,2,7]  ==  ([3,6,7],[5,2])
particion "particion"  ==  ("priin","atco")

Leer más…