Ir al contenido principal

Número de divisores

Definir la función

   numeroDivisores :: Integer -> Integer

tal que (numeroDivisores x) es el número de divisores de x. Por ejemplo,

   numeroDivisores 12  ==  6
   numeroDivisores 25  ==  3
   length (show (numeroDivisores (product [1..3*10^4])))  ==  1948

Leer más…

Conjunto de divisores

Definir la función

   divisores :: Integer -> [Integer]

tal que (divisores x) es el conjunto de divisores de los x. Por ejemplo,

  divisores 30  ==  [1,2,3,5,6,10,15,30]
  length (divisores (product [1..10]))  ==  270
  length (divisores (product [1..25]))  ==  340032

Leer más…

Reconocimiento de potencias de 2

Definir la función

   esPotenciaDeDos :: Integer -> Bool

tal que esPotenciaDeDos n se verifica si n es una potencia de dos (suponiendo que n es mayor que 0). Por ejemplo.

   esPotenciaDeDos    1        == True
   esPotenciaDeDos    2        == True
   esPotenciaDeDos    6        == False
   esPotenciaDeDos    8        == True
   esPotenciaDeDos 1024        == True
   esPotenciaDeDos 1026        == False
   esPotenciaDeDos (2^(10^8))  == True

Leer más…

Particiones de enteros positivos

Una partición de un entero positivo n es una manera de escribir n como una suma de enteros positivos. Dos sumas que sólo difieren en el orden de sus sumandos se consideran la misma partición. Por ejemplo, 4 tiene cinco particiones: 4, 3+1, 2+2, 2+1+1 y 1+1+1+1.

Definir la función

   particiones :: Int -> [[Int]]

tal que particiones n es la lista de las particiones del número n. Por ejemplo,

   particiones 4  ==  [[4],[3,1],[2,2],[2,1,1],[1,1,1,1]]
   particiones 5  ==  [[5],[4,1],[3,2],[3,1,1],[2,2,1],[2,1,1,1],[1,1,1,1,1]]
   length (particiones 50)  ==  204226

Leer más…

Mínimo producto escalar

El producto escalar de los vectores \([a_1,a_2,...,a_n]\) y \([b_1,b_2,..., b_n]\) es \[ a_1·b_1 + a_2·b_2 + ··· + a_n·b_n \]

Definir la función

   menorProductoEscalar :: (Ord a, Num a) => [a] -> [a] -> a

tal que (menorProductoEscalar xs ys) es el mínimo de los productos escalares de las permutaciones de xs y de las permutaciones de ys. Por ejemplo,

   menorProductoEscalar [3,2,5]  [1,4,6]    == 29
   menorProductoEscalar [3,2,5]  [1,4,-6]   == -19
   menorProductoEscalar [1..10^2] [1..10^2] == 171700
   menorProductoEscalar [1..10^3] [1..10^3] == 167167000
   menorProductoEscalar [1..10^4] [1..10^4] == 166716670000
   menorProductoEscalar [1..10^5] [1..10^5] == 166671666700000
   menorProductoEscalar [1..10^6] [1..10^6] == 166667166667000000

Leer más…

Números con dígitos primos

Definir la lista

   numerosConDigitosPrimos :: [Integer]

cuyos elementos son los números con todos sus dígitos primos. Por ejemplo,

   λ> take 22 numerosConDigitosPrimos
   [2,3,5,7,22,23,25,27,32,33,35,37,52,53,55,57,72,73,75,77,222,223]
   λ> numerosConDigitosPrimos !! (10^7)
   322732232572

Leer más…

Representación de Zeckendorf

Los primeros números de Fibonacci son

   1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, ...

tales que los dos primeros son iguales a 1 y los siguientes se obtienen sumando los dos anteriores.

El teorema de Zeckendorf establece que entero positivo n se puede representar, de manera única, como la suma de números de Fibonacci no consecutivos decrecientes. Dicha suma se llama la representación de Zeckendorf de n. Por ejemplo, la representación de Zeckendorf de 100 es

   100 = 89 + 8 + 3

Hay otras formas de representar 100 como sumas de números de Fibonacci; por ejemplo,

   100 = 89 +  8 + 2 + 1
   100 = 55 + 34 + 8 + 3

pero no son representaciones de Zeckendorf porque 1 y 2 son números de Fibonacci consecutivos, al igual que 34 y 55.

Definir la función

   zeckendorf :: Integer -> [Integer]

tal que (zeckendorf n) es la representación de Zeckendorf de n. Por ejemplo,

   zeckendorf 100 == [89,8,3]
   zeckendorf 200 == [144,55,1]
   zeckendorf 300 == [233,55,8,3,1]
   length (zeckendorf (10^50000)) == 66097

Leer más…

Descomposiciones triangulares

Los números triangulares se forman como sigue

   *     *      *
        * *    * *
              * * *
   1     3      6

La sucesión de los números triangulares se obtiene sumando los números naturales. Así, los 5 primeros números triangulares son

    1 = 1
    3 = 1 + 2
    6 = 1 + 2 + 3
   10 = 1 + 2 + 3 + 4
   15 = 1 + 2 + 3 + 4 + 5

Definir la función

   descomposicionesTriangulares :: Int -> [(Int, Int, Int)]

tal que descomposicionesTriangulares n es la lista de las ternas correspondientes a las descomposiciones de n en tres sumandos, como máximo, formados por números triangulares. Por ejemplo,

   λ> descomposicionesTriangulares3 4
   []
   λ> descomposicionesTriangulares3 5
   [(1,1,3)]
   λ> descomposicionesTriangulares3 12
   [(1,1,10),(3,3,6)]
   λ> descomposicionesTriangulares3 30
   [(1,1,28),(3,6,21),(10,10,10)]
   λ> descomposicionesTriangulares3 61
   [(1,15,45),(3,3,55),(6,10,45),(10,15,36)]
   λ> descomposicionesTriangulares3 52
   [(1,6,45),(1,15,36),(3,21,28),(6,10,36),(10,21,21)]
   λ> descomposicionesTriangulares3 82
   [(1,3,78),(1,15,66),(1,36,45),(6,10,66),(6,21,55),(10,36,36)]
   λ> length (descomposicionesTriangulares3 (5*10^5))
   124

Leer más…

Conjunto de primos relativos

Dos números enteros positivos son primos relativos si no tienen ningún factor primo en común; es decir, si 1 es su único divisor común. Por ejemplo, 6 y 35 son primos entre sí, pero 6 y 27 no lo son porque ambos son divisibles por 3.

Definir la función

   primosRelativos :: [Int] -> Bool

tal que primosRelativos xs se verifica si los elementos de xs son primos relativos dos a dos. Por ejemplo,

   primosRelativos [6,35]         ==  True
   primosRelativos [6,27]         ==  False
   primosRelativos [2,3,4]        ==  False
   primosRelativos [6,35,11]      ==  True
   primosRelativos [6,35,11,221]  ==  True
   primosRelativos [6,35,11,231]  ==  False

Leer más…

Diferencia simétrica

La diferencia simétrica de dos conjuntos es el conjunto cuyos elementos son aquellos que pertenecen a alguno de los conjuntos iniciales, sin pertenecer a ambos a la vez. Por ejemplo, la diferencia simétrica de {2,5,3} y {4,2,3,7} es {5,4,7}.

Definir la función

   diferenciaSimetrica :: Ord a => [a] -> [a] -> [a]

tal que diferenciaSimetrica xs ys es la diferencia simétrica de xs e ys. Por ejemplo,

   diferenciaSimetrica [2,5,3] [4,2,3,7]    ==  [4,5,7]
   diferenciaSimetrica [2,5,3] [5,2,3]      ==  []
   diferenciaSimetrica [2,5,2] [4,2,3,7]    ==  [3,4,5,7]
   diferenciaSimetrica [2,5,2] [4,2,4,7]    ==  [4,5,7]
   diferenciaSimetrica [2,5,2,4] [4,2,4,7]  ==  [5,7]

Leer más…