Producto cartesiano de una familia de conjuntos
Definir la función
producto :: [[a]] -> [[a]]
tal que (producto xss) es el producto cartesiano de los conjuntos xss. Por ejemplo,
λ> producto [[2,5],[6,4]] [[2,6],[2,4],[5,6],[5,4]] λ> producto [[1,3],[2,5],[6,4]] [[1,2,6],[1,2,4],[1,5,6],[1,5,4],[3,2,6],[3,2,4],[3,5,6],[3,5,4]] λ> producto [[1,3,5],[2,4]] [[1,2],[1,4],[3,2],[3,4],[5,2],[5,4]] λ> producto [] [[]]
Comprobar con QuickCheck que para toda lista de listas de enteros, xss, se verifica que el número de elementos de (producto xss) es igual al producto de los números de elementos de cada una de las listas de xss.
Soluciones
import Control.Monad (liftM2) import Control.Applicative (liftA2) import Test.Hspec (Spec, describe, hspec, it, shouldBe) import Test.QuickCheck (quickCheck) -- 1ª solución -- =========== producto1 :: [[a]] -> [[a]] producto1 [] = [[]] producto1 (xs:xss) = [x:ys | x <- xs, ys <- producto1 xss] -- 2ª solución -- =========== producto2 :: [[a]] -> [[a]] producto2 [] = [[]] producto2 (xs:xss) = [x:ys | x <- xs, ys <- ps] where ps = producto2 xss -- 3ª solución -- =========== producto3 :: [[a]] -> [[a]] producto3 [] = [[]] producto3 (xs:xss) = inserta3 xs (producto3 xss) -- (inserta xs xss) inserta cada elemento de xs en los elementos de -- xss. Por ejemplo, -- λ> inserta [1,2] [[3,4],[5,6]] -- [[1,3,4],[1,5,6],[2,3,4],[2,5,6]] inserta3 :: [a] -> [[a]] -> [[a]] inserta3 [] _ = [] inserta3 (x:xs) yss = [x:ys | ys <- yss] ++ inserta3 xs yss -- 4ª solución -- =========== producto4 :: [[a]] -> [[a]] producto4 = foldr inserta4 [[]] inserta4 :: [a] -> [[a]] -> [[a]] inserta4 [] _ = [] inserta4 (x:xs) yss = map (x:) yss ++ inserta4 xs yss -- 5ª solución -- =========== producto5 :: [[a]] -> [[a]] producto5 = foldr inserta5 [[]] inserta5 :: [a] -> [[a]] -> [[a]] inserta5 xs yss = [x:ys | x <- xs, ys <- yss] -- 6ª solución -- =========== producto6 :: [[a]] -> [[a]] producto6 = foldr inserta6 [[]] inserta6 :: [a] -> [[a]] -> [[a]] inserta6 xs yss = concatMap (\x -> map (x:) yss) xs -- 7ª solución -- =========== producto7 :: [[a]] -> [[a]] producto7 = foldr inserta7 [[]] inserta7 :: [a] -> [[a]] -> [[a]] inserta7 xs yss = xs >>= (\x -> map (x:) yss) -- 8ª solución -- =========== producto8 :: [[a]] -> [[a]] producto8 = foldr inserta8 [[]] inserta8 :: [a] -> [[a]] -> [[a]] inserta8 xs yss = (:) <$> xs <*> yss -- 9ª solución -- =========== producto9 :: [[a]] -> [[a]] producto9 = foldr inserta9 [[]] inserta9 :: [a] -> [[a]] -> [[a]] inserta9 = liftA2 (:) -- 10ª solución -- ============ producto10 :: [[a]] -> [[a]] producto10 = foldr (liftM2 (:)) [[]] -- 11ª solución -- ============ producto11 :: [[a]] -> [[a]] producto11 = sequence -- Verificación -- ============ verifica :: IO () verifica = hspec spec specG :: ([[Int]] -> [[Int]]) -> Spec specG producto = do it "e1" $ producto [[1,3],[2,5]] `shouldBe` [[1,2],[1,5],[3,2],[3,5]] it "e2" $ producto [[1,3],[2,5],[6,4]] `shouldBe` [[1,2,6],[1,2,4],[1,5,6],[1,5,4],[3,2,6],[3,2,4],[3,5,6],[3,5,4]] it "e3" $ producto [[1,3,5],[2,4]] `shouldBe` [[1,2],[1,4],[3,2],[3,4],[5,2],[5,4]] spec :: Spec spec = do describe "def. 1" $ specG producto1 describe "def. 2" $ specG producto2 describe "def. 3" $ specG producto3 describe "def. 4" $ specG producto4 describe "def. 5" $ specG producto5 describe "def. 6" $ specG producto6 describe "def. 7" $ specG producto7 describe "def. 8" $ specG producto8 describe "def. 9" $ specG producto9 describe "def. 10" $ specG producto10 describe "def. 11" $ specG producto11 -- La verificación es -- λ> verifica -- 33 examples, 0 failures -- Comprobación de equivalencia -- ============================ -- La propiedad es prop_producto :: [[Int]] -> Bool prop_producto xss = all (== producto1 xss) [ producto2 xss , producto3 xss , producto4 xss , producto5 xss , producto6 xss , producto7 xss , producto8 xss , producto9 xss , producto10 xss , producto11 xss ] -- La comprobación es -- λ> quickCheckWith (stdArgs {maxSize = 9}) prop_producto -- +++ OK, passed 100 tests. -- Comparación de eficiencia -- ========================= -- La comparación es -- λ> length (producto1 (replicate 7 [0..9])) -- 10000000 -- (10.04 secs, 10,507,268,856 bytes) -- λ> length (producto2 (replicate 7 [0..9])) -- 10000000 -- (1.71 secs, 1,333,943,632 bytes) -- λ> length (producto3 (replicate 7 [0..9])) -- 10000000 -- (2.94 secs, 1,956,176,072 bytes) -- λ> length (producto4 (replicate 7 [0..9])) -- 10000000 -- (1.06 secs, 1,600,616,296 bytes) -- λ> length (producto5 (replicate 7 [0..9])) -- 10000000 -- (1.77 secs, 1,333,943,248 bytes) -- λ> length (producto6 (replicate 7 [0..9])) -- 10000000 -- (1.06 secs, 1,600,608,064 bytes) -- λ> length (producto7 (replicate 7 [0..9])) -- 10000000 -- (0.34 secs, 1,600,607,784 bytes) -- λ> length (producto8 (replicate 7 [0..9])) -- 10000000 -- (1.03 secs, 978,390,888 bytes) -- λ> length (producto9 (replicate 7 [0..9])) -- 10000000 -- (1.20 secs, 1,067,273,920 bytes) -- λ> length (producto10 (replicate 7 [0..9])) -- 10000000 -- (0.58 secs, 2,311,718,360 bytes) -- λ> length (producto11 (replicate 7 [0..9])) -- 10000000 -- (1.22 secs, 1,067,273,840 bytes) -- -- λ> length (producto7 (replicate 7 [1..14])) -- 105413504 -- (3.71 secs, 16,347,812,624 bytes) -- λ> length (producto10 (replicate 7 [1..14])) -- 105413504 -- (5.12 secs, 23,613,234,792 bytes) -- λ> length (producto11 (replicate 7 [1..14])) -- 105413504 -- (17.83 secs, 10,898,744,528 bytes) -- Comprobación de la propiedad -- ============================ -- La propiedad es prop_longitud :: [[Int]] -> Bool prop_longitud xss = length (producto7 xss) == product (map length xss) -- La comprobación es -- λ> quickCheckWith (stdArgs {maxSize = 7}) prop_longitud -- +++ OK, passed 100 tests.