Clausura de un conjunto respecto de una función
Un conjunto A está cerrado respecto de una función f si para todo elemento x de A se tiene que f(x) pertenece a A. La clausura de un conjunto B respecto de una función f es el menor conjunto A que contiene a B y es cerrado respecto de f. Por ejemplo, la clausura de {0,1,2} respecto del opuesto es {0,1,2,-1,-2}.
Definir la función
clausura :: Eq a => (a -> a) -> [a] -> [a]
tal que (clausura f xs) es la clausura de xs respecto de f. Por ejemplo,
clausura (\x -> -x) [0,1,2] == [0,1,2,-1,-2] clausura (\x -> (x+1) `mod` 5) [0] == [0,1,2,3,4]
Soluciones
import Data.List ((\\), nub, sort, union) import qualified Data.Set as S (Set, difference, fromList, map, null, toList, union) import Test.Hspec (Spec, describe, hspec, it, shouldBe) import Test.QuickCheck.HigherOrder (quickCheck') -- 1ª solución -- =========== clausura1 :: Ord a => (a -> a) -> [a] -> [a] clausura1 f xs | esCerrado f xs = sort xs | otherwise = clausura1 f (expansion f xs) -- (esCerrado f xs) se verifica si al aplicar f a cualquier elemento de -- xs se obtiene un elemento de xs. Por ejemplo, -- λ> esCerrado (\x -> -x) [0,1,2] -- False -- λ> esCerrado (\x -> -x) [0,1,2,-2,-1] -- True esCerrado :: Ord a => (a -> a) -> [a] -> Bool esCerrado f xs = all (`elem` xs) (map f xs) -- (expansion f xs) es la lista (sin repeticiones) obtenidas añadiéndole -- a xs el resultado de aplicar f a sus elementos. Por ejemplo, -- expansion (\x -> -x) [0,1,2] == [0,1,2,-1,-2] expansion :: Ord a => (a -> a) -> [a] -> [a] expansion f xs = xs `union` map f xs -- 2ª solución -- =========== clausura2 :: Ord a => (a -> a) -> [a] -> [a] clausura2 f xs = sort (until (esCerrado f) (expansion f) xs) -- 3ª solución -- =========== clausura3 :: Ord a => (a -> a) -> [a] -> [a] clausura3 f xs = aux xs xs where aux ys vs | null ns = sort vs | otherwise = aux ns (vs ++ ns) where ns = nub (map f ys) \\ vs -- 4ª solución -- =========== clausura4 :: Ord a => (a -> a) -> [a] -> [a] clausura4 f xs = S.toList (clausura4' f (S.fromList xs)) clausura4' :: Ord a => (a -> a) -> S.Set a -> S.Set a clausura4' f xs = aux xs xs where aux ys vs | S.null ns = vs | otherwise = aux ns (vs `S.union` ns) where ns = S.map f ys `S.difference` vs -- Verificación -- ============ verifica :: IO () verifica = hspec spec specG :: ((Int -> Int) -> [Int] -> [Int]) -> Spec specG clausura = do it "e1" $ clausura (\x -> -x) [0,1,2] `shouldBe` [-2,-1,0,1,2] it "e2" $ clausura (\x -> (x+1) `mod` 5) [0] `shouldBe` [0,1,2,3,4] spec :: Spec spec = do describe "def. 1" $ specG clausura1 describe "def. 2" $ specG clausura2 describe "def. 3" $ specG clausura3 describe "def. 4" $ specG clausura4 -- La verificación es -- λ> verifica -- 8 examples, 0 failures -- Comprobación de equivalencia -- ============================ -- La propiedad es prop_clausura :: (Int -> Int) -> [Int] -> Bool prop_clausura f xs = all (== clausura1 f xs') [ clausura2 f xs' , clausura3 f xs' , clausura4 f xs' ] where xs' = sort (nub xs) -- La comprobación es -- λ> quickCheck' prop_clausura -- +++ OK, passed 100 tests. -- Comparación de eficiencia -- ========================= -- La comparación es -- λ> length (clausura1 (\x -> (x+1) `mod` 800) [0]) -- 800 -- (1.95 secs, 213,481,560 bytes) -- λ> length (clausura2 (\x -> (x+1) `mod` 800) [0]) -- 800 -- (1.96 secs, 213,372,824 bytes) -- λ> length (clausura3 (\x -> (x+1) `mod` 800) [0]) -- 800 -- (0.03 secs, 42,055,128 bytes) -- λ> length (clausura4 (\x -> (x+1) `mod` 800) [0]) -- 800 -- (0.01 secs, 1,779,768 bytes) -- -- λ> length (clausura3 (\x -> (x+1) `mod` (10^4)) [0]) -- 10000 -- (2.50 secs, 8,080,105,816 bytes) -- λ> length (clausura4 (\x -> (x+1) `mod` (10^4)) [0]) -- 10000 -- (0.05 secs, 27,186,920 bytes)