Ir al contenido principal

Elemento del árbol binario completo según su posición

Un árbol binario completo es un árbol binario que tiene todos los nodos posibles hasta el penúltimo nivel, y donde los elementos del último nivel están colocados de izquierda a derecha sin dejar huecos entre ellos.

La numeración de los árboles binarios completos se realiza a partir de la raíz, recorriendo los niveles de izquierda a derecha. Por ejemplo,

        1
       /  \
      /    \
     /      \
    2        3
   / \      / \
  4   5    6   7
 / \
8   9

Los árboles binarios se puede representar mediante el siguiente tipo

data Arbol = H
           | N Integer Arbol Arbol
  deriving (Show, Eq)

Cada posición de un elemento de un árbol es una lista de movimientos hacia la izquierda o hacia la derecha. Por ejemplo, la posición de 9 en al árbol anterior es [I,I,D].

Los tipos de los movimientos y de las posiciones se definen por

data Movimiento = I | D deriving (Show, Eq)
type Posicion   = [Movimiento]

Definir la función

elementoEnPosicion :: Posicion -> Integer

tal que (elementoEnPosicion ms) es el elemento en la posición ms. Por ejemplo,

elementoEnPosicion [D,I]    ==  6
elementoEnPosicion [D,D]    ==  7
elementoEnPosicion [I,I,D]  ==  9
elementoEnPosicion []       ==  1

Soluciones

import Test.QuickCheck

data Arbol = H
           | N Integer Arbol Arbol
  deriving (Eq, Show)

data Movimiento = I | D deriving (Show, Eq)

type Posicion = [Movimiento]

-- 1ª solución
-- ===========

elementoEnPosicion :: Posicion -> Integer
elementoEnPosicion ms =
  aux ms (arbolBinarioCompleto (2^(1 + length ms)))
  where aux []     (N x _ _) = x
        aux (I:ms) (N _ i _) = aux ms i
        aux (D:ms) (N _ _ d) = aux ms d

-- (arbolBinarioCompleto n) es el árbol binario completo con n
-- nodos. Por ejemplo,
--    λ> arbolBinarioCompleto 4
--    N 1 (N 2 (N 4 H H) H) (N 3 H H)
--    λ> pPrint (arbolBinarioCompleto 9)
--    N 1
--      (N 2
--         (N 4
--            (N 8 H H)
--            (N 9 H H))
--         (N 5 H H))
--      (N 3
--         (N 6 H H)
--         (N 7 H H))
arbolBinarioCompleto :: Integer -> Arbol
arbolBinarioCompleto n = aux 1
  where aux i | i <= n    = N i (aux (2*i)) (aux (2*i+1))
              | otherwise = H

-- 2ª solución
-- ===========

elementoEnPosicion2 :: Posicion -> Integer
elementoEnPosicion2 = aux . reverse
  where aux []     = 1
        aux (I:ms) = 2 * aux ms
        aux (D:ms) = 2 * aux ms + 1

-- Equivalencia
-- ============

-- La propiedad es
prop_elementoEnPosicion_equiv :: Positive Integer -> Bool
prop_elementoEnPosicion_equiv (Positive n) =
  elementoEnPosicion  ps == n &&
  elementoEnPosicion2 ps == n
  where ps = posicionDeElemento n

-- tal que (posicionDeElemento n) es la posición del elemento n en el
-- árbol binario completo. Por ejemplo,
--    posicionDeElemento 6  ==  [D,I]
--    posicionDeElemento 7  ==  [D,D]
--    posicionDeElemento 9  ==  [I,I,D]
--    posicionDeElemento 1  ==  []
posicionDeElemento :: Integer -> Posicion
posicionDeElemento n =
  [f x | x <- tail (reverse (binario n))]
  where f 0 = I
        f 1 = D

-- (binario n) es la lista de los dígitos de la representación binaria
-- de n. Por ejemplo,
--    binario 11  ==  [1,1,0,1]
binario :: Integer -> [Integer]
binario n
  | n < 2     = [n]
  | otherwise = n `mod` 2 : binario (n `div` 2)

-- La comprobación es
--    λ> quickCheck prop_elementoEnPosicion_equiv
--    +++ OK, passed 100 tests.

-- Comparación de eficiencia
-- =========================

--    λ> length (show (elementoEnPosicion (replicate (3*10^5) D)))
--    90310
--    (1.96 secs, 11,518,771,016 bytes)
--    λ> length (show (elementoEnPosicion2 (replicate (3*10^5) D)))
--    90310
--    (14.32 secs, 11,508,181,176 bytes)