Ir al contenido principal

Cadenas de primos complementarios

El complemento de un número positivo x se calcula por el siguiente procedimiento:

  • si x es mayor que 9, se toma cada dígito por su valor posicional y se resta del mayor los otro dígitos. Por ejemplo, el complemento de 1448 es 1000 - 400 - 40 - 8 = 552. Para
  • si x es menor que 10, su complemento es x.

Definir las funciones

cadena    :: Integer -> [Integer]
conCadena :: Int -> [Integer]

tales que

  • (cadena x) es la cadena de primos a partir de x tal que cada uno es el complemento del anterior. Por ejemplo,
cadena 8         == []
cadena 7         == [7]
cadena 13        == [13,7]
cadena 643       == [643,557,443]
cadena 18127     == [18127,1873,127,73,67,53,47]
cadena 18181213  == [18181213,1818787,181213,18787,1213,787,613,587]
  • (conCadena n) es la lista de números cuyas cadenas tienen n elementos. Por ejemplo,
take 6 (conCadena 3)                == [23,31,61,67,103,307]
[head (conCadena n) | n <- [4..8]]  == [37,43,157,18127,181873]

Soluciones

import Data.Numbers.Primes

-- (complemento x) es le complemento de x. Por ejemplo,
--    complemento 1448  == 552
--    complemento  639  == 561
--    complemento    7  == 7
complemento :: Integer -> Integer
complemento x = (div x c)*c - (rem x c)
  where c = 10^(length (show x) - 1)

cadena :: Integer -> [Integer]
cadena x
  | x < 10 && isPrime x = [x]
  | otherwise           = takeWhile isPrime (iterate f x)
  where f x | x < 10 && isPrime x = 0
              | otherwise           = complemento x

conCadena :: Int -> [Integer]
conCadena n =
  [y | y <- primes, length (cadena y) == n]