Ir al contenido principal

Sumas de potencias que son cuadrados perfectos

El 2º problema de la ONEM (Olimpíada Nacional Escolar de Matemática) de Mayo del 2020 dice

Determinar si existen enteros positivos a, b y c, no necesariamente distintos, tales que [latex]a+b+c=2020[/latex] y [latex]2^a + 2^b + 2^c[/latex] es un cuadrado perfecto.

Definir la función

soluciones :: Integer -> Integer -> [(Integer,Integer,Integer)]

tales que (soluciones k n) es la lista de las ternas no decrecientes (a,b,c) tales que que a+b+c=n y k^a + k^b + k^c es un cuadrado perfecto. Por ejemplo,

soluciones 2 19  ==  [(2,6,11),(2,7,10),(4,7,8),(5,5,9),(6,6,7)]
soluciones 3 19  ==  []
take 2 (soluciones 2 2020)  ==  [(2,674,1344),(4,674,1342)]

Soluciones

soluciones :: Integer -> Integer -> [(Integer,Integer,Integer)]
soluciones k n =
  [(a,b,c) | a <- [1..n `div` 3],
             b <- [a..n-a],
             let c = n-a-b,
             c >= b,
             esCuadradoPerfecto (k^a + k^b + k^c)]

-- (esCuadradoPerfecto x) se verifica si x es un cuadrado perfecto. Por
-- ejemplo,
--    esCuadradoPerfecto 16  ==  True
--    esCuadradoPerfecto 27  ==  False
esCuadradoPerfecto :: Integer -> Bool
esCuadradoPerfecto x =
  (raizEntera x)^2 == x

-- (raizEntera x) es el mayor entero cuyo cuadrado es menor o igual que
-- x. Por ejemplo,
--    raizEntera 16  ==  4
--    raizEntera 27  ==  5
raizEntera :: Integer -> Integer
raizEntera x = aux (1,x)
    where aux (a,b) | d == x    = c
                    | c == a    = c
                    | d < x     = aux (c,b)
                    | otherwise = aux (a,c)
              where c = (a+b) `div` 2
                    d = c^2