Ir al contenido principal

Actualización de «Triángulos de Herón»

He actualizado las soluciones del ejercicio «Triángulos de Herón» cuyo enunciado es


Un triángulo de Herón es un triángulo tal que sus lados y su área son números enteros. Su nombre se debe al matemático griego Herón de Alejandría que descubrió la fórmula para calcular el área de un triángulo a partir de sus lados.

La fórmula de Herón dice que el área de un triángulo cuyos lados miden \(a\), \(b\) y \(c\) es \[\sqrt{s(s-a)(s-b)(s-c)}\] donde \(s\) es el semiperímetro del triángulo; es decir, \[s=\frac{a+b+c}{2}\]

Un ejemplo de triángulo de Herón es el triángulo de lados 3, 4 y 5 cuya área es 6. Se puede observar que cualquier triángulo cuyos lados sean múltiplos de 3, 4 y 5 también es de Herón; por ejemplo, el de lados 6, 8 y 10 también lo es.

Se dice que un triángulo de Herón es primitivo si el máximo común divisor de sus lados es 1. Por ejemplo, el de lados 3, 4 y 5 es primitivo; pero el de lados 6, 8 y 10 no lo es.

Definir la sucesión

triangulosHeronPrimitivos :: [(Int,Int,Int)]

tal que sus elementos son los triángulos de Herón primitivos ordenados por su perímetro. Por ejemplo,

λ> take 7 triangulosHeronPrimitivos
[(3,4,5),(5,5,6),(5,5,8),(5,12,13),(4,13,15),(10,13,13),(9,10,17)]
λ> triangulosHeronPrimitivos !! 1000
(212,225,247)

Nota: Puedes consultar las soluciones aquí.