Ir al contenido principal

Actualización de «Números polidivisibles»

He actualizado las soluciones del ejercicio «Números polidivisibles» cuyo enunciado es


Un número natural es polidivisible si cumple las siguientes condiciones:

  • El número formado por sus dos primeros dígitos es divisible por 2.
  • El número formado por sus tres primeros dígitos es divisible por 3.
  • El número formado por sus cuatros primeros dígitos es divisible por 4.
  • etcétera.

Por ejemplo, el número 345654 es un número polidivisible ya que

  • 34 es divisible por 2,
  • 345 es divisible por 3,
  • 3456 es divisible por 4,
  • 34565 es divisible por 5 y
  • 345654 es divisible por 6.

pero 123456 no lo es, porque 1234 no es divisible por 4.

Definir las funciones

polidivisibles :: [Integer]
polidivisiblesN :: Integer -> [Integer]

tales que

  • polidivisible es la sucesión cuyos elementos son los números polidivisibles. Por ejemplo,
λ> take 20 polidivisibles
[1,2,3,4,5,6,7,8,9,10,12,14,16,18,20,22,24,26,28,30]
λ> take 10 (dropWhile (<100) polidivisibles)
[102,105,108,120,123,126,129,141,144,147]
λ> polidivisibles !! 20455
3608528850368400786036725
  • (polidivisiblesN k) es la lista de los números polidivisibles con k dígitos. Por ejemplo,
λ> polidivisiblesN 2
[10,12,14,16,18,20,22,24,26,28,30,32,34,36,38,40,42,44,46,48,
 50,52,54,56,58,60,62,64,66,68,70,72,74,76,78,80,82,84,86,88,
 90,92,94,96,98]
λ> polidivisiblesN 25
[3608528850368400786036725]
(0.01 secs, 615,984 bytes)
λ> polidivisiblesN 26
[]

Comprobar que, para n entre 1 y 5, la cantidad de números polidivisibles de n dígitos es \[\frac{9 \times 10^{n-1}}{n!}\]


Nota: Puedes consultar las soluciones aquí.