Ir al contenido principal

Actualización de «Sumas de 4 primos»

He actualizado las soluciones del ejercicio «Sumas de 4 primos» cuyo enunciado es


La conjetura de Waring sobre los números primos establece que todo número impar es primo o la suma de tres primos. La conjetura de Goldbach afirma que todo número par mayor que 2 es la suma de dos números primos. Ambos problemas siguen abiertos después de más de 200 años. En este problema no se propone su solución, sino una tarea más simple: buscar una manera de expresar los enteros mayores que 7 como suma de exactamente cuatro números primos; es decir, definir la función

suma4primos :: Integer -> (Integer,Integer,Integer,Integer)

tal que (suma4primos n) es una cuádrupla (a,b,c,d) de números primos cuya suma es n (que se supone mayor que 7). Por ejemplo,

suma4primos 24             ==  (2,2,3,17)
suma4primos 1234567890123  ==  (2,3,29,1234567890089)

Comprobar con QuickCheck que suma4primos es correcta; es decir si (suma4primos n) es (a,b,c,d) entonces los números a, b, c y d son primos y su suma es n.

Nota: Para cada n pueden existir distintas cuádruplas que cumplan la especificación. Por ejemplo, para el 16 hay tres: (2,2,5,7), (3,3,3,7) y (3,3,5,5). Cualquiera de ellas se admite como solución.


Nota: Puedes consultar las soluciones aquí.