Ir al contenido principal

Cálculo de pi mediante la fórmula de Beeler

El pasado 12 de marzo se publicó en Twitter un mensaje con una fórmula de Beeler para el cálculo de pi: Cálculo de pi mediante la fórmula de Beeler

Los primeros valores son

   λ> 2*1
   2
   λ> 2*(1+1/3)
   2.6666666666666665
   λ> 2*(1+1/3+(1*2)/(3*5))
   2.933333333333333
   λ> 2*(1+1/3+(1*2)/(3*5)+(1*2*3)/(3*5*7))
   3.0476190476190474
   λ> 2*(1+1/3+(1*2)/(3*5)+(1*2*3)/(3*5*7)+(1*2*3*4)/(3*5*7*9))
   3.098412698412698

Definir las funciones

   aproximacionPi :: Int -> Double
   grafica        :: [Int] -> IO ()

tales que

  • (aproximacionPi n) es la n-ésima aproximación de pi con la fórmula de Beeler. Por ejemplo,
     aproximacionPi 0    ==  2.0
     aproximacionPi 1    ==  2.6666666666666665
     aproximacionPi 2    ==  2.933333333333333
     aproximacionPi 3    ==  3.0476190476190474
     aproximacionPi 4    ==  3.098412698412698
     aproximacionPi 10   ==  3.141106021601377
     aproximacionPi 100  ==  3.1415926535897922
     pi                  ==  3.141592653589793
  • (grafica xs) dibuja la gráfica de las k-ésimas aproximaciones de pi para k en xs. Por ejemplo, (grafica [0..99]) dibuja Cálculo de pi mediante la fórmula de Beeler

Leer más…

Números ordenados con cuadrados ordenados

Un número es ordenado si cada uno de sus dígitos es menor o igual el siguiente dígito. Por ejemplo, 116 es un número creciente cuadrado es 13456 que también es ordenado. En cambio, 115 es ordenado pero su cuadrado es 13225 que no es ordenado.

Definir la lista

   numerosOrdenadosConCuadradosOrdenados :: [Integer]

cuyos elementos son los números ordenados cuyos cuadrados también lo son. Por ejemplo,

   λ> take 20 numerosOrdenadosConCuadradosOrdenados
   [0,1,2,3,4,5,6,7,12,13,15,16,17,34,35,37,38,67,116,117]
   λ> length (show (numerosOrdenadosConCuadradosOrdenados !! (10^6)))
   1411
   λ> length (show (numerosOrdenadosConCuadradosOrdenados !! (5*10^6)))
   3159

Leer más…

Números con cuadrados con dígitos pares

Definir la lista

   numerosConCuadradosConDigitosPares :: [Integer]

cuyos elementos son los números cuyos cuadrados tienen todos sus dígitos pares. Por ejemplo,

   λ> take 20 numerosConCuadradosConDigitosPares
   [0,2,8,20,22,68,78,80,92,162,168,200,202,220,262,298,478,492,498,668]

Comprobar con QuickCheck que numerosConCuadradosConDigitosPares es infinita; es decir, para cualquier n posee algún elemento mayor que n.


Leer más…

Cálculo de pi mediante la fórmula de Bauer

El pasado 10 de marzo se publicó en Twitter un mensaje con una [fórmula de Bauer}(https://en.wikipedia.org/wiki/Gustav_Conrad_Bauer#Footnotes_in_the_history_of_mathematics) para el cálculo de pi Cálculo de pi mediante la fórmula de Bauer

Los primeros valores son

   λ> 2/1
   2.0
   λ> 2/(1 - 5*(1/2)^3)
   5.333333333333333
   λ> 2/(1 - 5*(1/2)^3 + 9*((1*3)/(2*4))^3)
   2.354022988505747
   λ> 2/(1 - 5*(1/2)^3 + 9*((1*3)/(2*4))^3 - 13*((1*3*5)/(2*4*6))^3)
   4.416172506738545

Definir las funciones

   aproximacionPi :: Int -> Double
   grafica        :: [Int] -> IO ()

tales que

  • (aproximacionPi n) es la n-ésima aproximación de pi con la fórmula de Bauer. Por ejemplo,
     aproximacionPi 0         ==  2.0
     aproximacionPi 1         ==  5.333333333333333
     aproximacionPi 2         ==  2.354022988505747
     aproximacionPi 3         ==  4.416172506738545
     aproximacionPi (10^2)    ==  2.974407762733626
     aproximacionPi (10^2+1)  ==  3.3277148010019233
     aproximacionPi (10^3)    ==  3.0865454975585744
     aproximacionPi (10^3+1)  ==  3.1986099487445463
     aproximacionPi (10^4)    ==  3.1239682112773868
     aproximacionPi (10^4+1)  ==  3.1594161911246594
     aproximacionPi (10^5)    ==  3.135997665507836
     aproximacionPi (10^5+1)  ==  3.147207613460776
     pi                       ==  3.141592653589793
  • (grafica xs) dibuja la gráfica de las k-ésimas aproximaciones de pi para k en xs. Por ejemplo, (grafica [0..99]) dibuja Cálculo de pi mediante la fórmula de Bauer

Leer más…

Cálculo de pi mediante la fórmula de Euler

El pasado 6 de marzo se publicó en Twitter un mensaje con la siguiente fórmula de Euler para el cálculo de pi

Cálculo de pi mediante la fórmula de Euler

Definir las funciones

   aproximacionPi :: Int -> Double
   grafica        :: [Int] -> IO ()

tales que

  • (aproximacionPi n) es la n-ésima aproximación de pi con la fórmula de Euler. Por ejemplo,
     aproximacionPi 1        ==  2.449489742783178
     aproximacionPi 10       ==  3.04936163598207
     aproximacionPi 100      ==  3.1320765318091053
     aproximacionPi 1000     ==  3.1406380562059946
     aproximacionPi 10000    ==  3.1414971639472147
     aproximacionPi 100000   ==  3.141583104326456
     aproximacionPi 1000000  ==  3.1415916986605086
     pi                      ==  3.141592653589793
  • (grafica xs) dibuja la gráfica de las k-ésimas aproximaciones de pi para k en xs. Por ejemplo, (grafica [1..100]) dibuja

Cálculo de pi mediante la fórmula de Euler


Leer más…

Representaciones de un número como potencia

El número 512 se puede escribir de tres maneras como potencias:

   512 = 2⁹ = 8³ = 512¹

Definir las funciones

   potencias       :: Integer -> [(Integer,Integer)]
   numeroPotencias :: Integer -> Int

tales que

  • (potencias x) es la lista de las representaciones de x como potencias de números enteros positivos. Por ejemplo,
     potencias 7      ==  [(7,1)]
     potencias 8      ==  [(2,3),(8,1)]
     potencias 512    ==  [(2,9),(8,3),(512,1)]
     potencias 16384  ==  [(2,14),(4,7),(128,2),(16384,1)]
     potencias 65536  ==  [(2,16),(4,8),(16,4),(256,2),(65536,1)]
  • (numeroPotencias x) de las representaciones de x como potencias de números enteros positivos. Por ejemplo,
     numeroPotencias 7          ==  1
     numeroPotencias 8          ==  2
     numeroPotencias 512        ==  3
     numeroPotencias 16384      ==  4
     numeroPotencias 65536      ==  5
     numeroPotencias (2^(10^5)) ==  36

Leer más…

Cálculo de pi mediante la fórmula de Brouncker

El mes de marzo es el mes de pi, ya que el 14 de marzo (3/14) es el día de pi. Con ese motivo, el pasado 3 de marzo se publicó en Twitter un mensaje con la fórmula de Brouncker para el cálculo de pi Cálculo de pi mediante la fórmula de Brouncker

La primeras aproximaciones son

     a(1) = 4                                  =  4
     a(2) = 4/(1+1^2)                          =  2.0
     a(3) = 4/(1+1^2/(2+3^2))                  =  3.666666666666667
     a(4) = 4/(1+1^2/(2+3^2/(2+5^2)))          =  2.8
     a(5) = 4/(1+1^2/(2+3^2/(2+5^2/(2+7^2))))  =  3.395238095238095

Definir las funciones

   aproximacionPi :: Int -> Double
   grafica        :: [Int] -> IO ()

tales que

  • (aproximacionPi n) es la n-ésima aproximación de pi con la fórmula de Brouncker. Por ejemplo,
     aproximacionPi 1      ==  4.0
     aproximacionPi 2      ==  2.0
     aproximacionPi 3      ==  3.666666666666667
     aproximacionPi 4      ==  2.8
     aproximacionPi 5      ==  3.395238095238095
     aproximacionPi 10     ==  3.0301437124966535
     aproximacionPi 1000   ==  3.1405916523380406
     aproximacionPi 1001   ==  3.142592653839793
     aproximacionPi 10000  ==  3.141492643588543
     aproximacionPi 10001  ==  3.1416926535900433
     pi                    ==  3.141592653589793
  • (grafica xs) dibuja la gráfica de las k-ésimas aproximaciones de pi para k en xs. Por ejemplo, (grafica [10..100]) dibuja Cálculo de pi mediante la fórmula de Brouncker

Leer más…

Cálculo de pi mediante la serie de Madhava

El mes de marzo es el mes de pi, ya que el 14 de marzo (3/14) es el día de pi. Con ese motivo, el pasado 1 de marzo se publicó en Twitter un mensaje con la fórmula de Madhava para el cálculo de pi Cálculo de pi mediante la serie de Madhava

Definir las funciones

   aproximacionPi :: Int -> Double
   grafica        :: Int -> IO ()

tales que

  • (aproximacionPi n) es la n-ésima aproximación de pi con la fórmula de Madhava. Por ejemplo,
     aproximacionPi 0   ==  3.4641016151377544
     aproximacionPi 1   ==  3.0792014356780038
     aproximacionPi 2   ==  3.156181471569954
     aproximacionPi 10  ==  3.1415933045030813
     aproximacionPi 21  ==  3.1415926535879337
     pi                 ==  3.141592653589793
  • (grafica n) dibuja la gráfica de las k-ésimas aproximaciones de pi para k desde 0 a n. Por ejemplo, (grafica 30) dibuja Cálculo de pi mediante la serie de Madhava

Leer más…

Sucesión de Rowland

Definir las siguientes sucesiones

   sucesionA       :: [Integer]
   sucesionB       :: [Integer]
   sucesionRowland :: [Integer]

tales que

  • el término n-ésimo de la sucesionA es a(n) definido por a(1) = 7 y a(n) = a(n-1) + mcd(n, a(n-1)), para n > 1. Por ejemplo,
     λ> take 20 sucesionA
     [7,8,9,10,15,18,19,20,21,22,33,36,37,38,39,40,41,42,43,44]
  • los términos de la sucesionB son las diferencias de los términos consecutivos de la sucesionA. Por ejemplo,
     λ> take 30 sucesionB
     [1,1,1,5,3,1,1,1,1,11,3,1,1,1,1,1,1,1,1,1,1,23,3,1,1,1,1,1,1,1]
  • los términos de la sucesionRowland son los términos de la sucesionB distintos de 1. Por ejemplo,\0
      λ> take 20 sucesionRowland
      [5,3,11,3,23,3,47,3,5,3,101,3,7,11,3,13,233,3,467,3]
      λ> sucesionRowland !! 92
      15567089

Comprobar con QuickCheck que los elementos de la sucesionRowland son números primos.

Nota: Eric S. Rowland demostró en A natural prime-generating recurrence que los elementos de la sucesionRowland son números primos.


Leer más…

Sumas parciales

Los sufijos de la lista [3,7,2,5,4,6] son

   [3,7,2,5,4,6]
     [7,2,5,4,6]
       [2,5,4,6]
         [5,4,6]
           [4,6]
             [6]
              []

y la lista de sus sumas es [27,24,17,15,10,6,0].

Definir la función

   sumasParciales :: [Integer] -> [Integer]

tal que (sumasParciales xs) es la suma de los sufijos de xs. Por ejemplo,

   sumasParciales [3,7,2,5,4,6]  ==  [27,24,17,15,10,6,0]
   sumasParciales [1..10]        ==  [55,54,52,49,45,40,34,27,19,10,0]
   sum (sumasParciales [1..5*10^6])  ==  41666679166667500000

Leer más…