Ir al contenido principal

Suma de los cuadrados de los primeros números naturales

Definir la función

   sumaDeCuadrados :: Integer -> Integer

tal que sumaDeCuadrados n es la suma de los cuadrados de los primeros n números; es decir, 1² + 2² + ... + n². Por ejemplo,

   sumaDeCuadrados 3    ==  14
   sumaDeCuadrados 100  ==  338350
   length (show (sumaDeCuadrados (10^100)))  ==  300

Leer más…

Números libres de cuadrados

Un número es libre de cuadrados si no es divisible por el cuadrado de ningún entero mayor que 1. Por ejemplo, 70 es libre de cuadrado porque sólo es divisible por 1, 2, 5, 7 y 70; en cambio, 40 no es libre de cuadrados porque es divisible por 2^2.

Definir la función

   libreDeCuadrados :: Integer -> Bool

tal que libreDeCuadrados x se verifica si x es libre de cuadrados. Por ejemplo,

   libreDeCuadrados 70  ==  True
   libreDeCuadrados 40  ==  False
   libreDeCuadrados (product (take 30000 primes))  ==  True

Leer más…

Divisores primos

Definir la función

   divisoresPrimos :: Integer -> [Integer]

tal que divisoresPrimos x es la lista de los divisores primos de x. Por ejemplo,

   divisoresPrimos 40 == [2,5]
   divisoresPrimos 70 == [2,5,7]
   length (divisoresPrimos (product [1..20000])) == 2262

Leer más…

Diferencia conjuntista de listas

Definir la función

   diferencia :: Eq a => [a] -> [a] -> [a]

tal que diferencia xs ys es la diferencia de las listas sin elementos repetidos xs e ys. Por ejemplo,

   diferencia [3,2,5,6] [5,7,3,4]  ==  [2,6]
   diferencia [3,2,5] [5,7,3,2]    ==  []

Leer más…

Divisores de un número

Definir la función

   divisores :: Integer -> [Integer]

tal que divisores n es la lista de los divisores de n. Por ejemplo,

  divisores 30  ==  [1,2,3,5,6,10,15,30]
  length (divisores (product [1..10]))  ==  270
  length (divisores (product [1..25]))  ==  340032

Leer más…

Intersección conjuntista de listas

Definir la función

   interseccion :: Eq a => [a] -> [a] -> [a]

tal que interseccion xs ys es la intersección de las listas sin elementos repetidos xs e ys. Por ejemplo,

   interseccion [3,2,5] [5,7,3,4]  ==  [3,5]
   interseccion [3,2,5] [9,7,6,4]  ==  []

Leer más…

Unión conjuntista de listas

Definir la función

   union :: Ord a => [a] -> [a] -> [a]

tal que union xs ys es la unión de las listas, sin elementos repetidos, xs e ys. Por ejemplo,

   union [3,2,5] [5,7,3,4]  ==  [3,2,5,7,4]

Comprobar con QuickCheck que la unión es conmutativa.

Leer más…

Igualdad de conjuntos

Definir la función

   iguales :: Ord a => [a] -> [a] -> Bool

tal que iguales xs ys se verifica si xs e ys son iguales como conjuntos. Por ejemplo,

   iguales [3,2,3] [2,3]    ==  True
   iguales [3,2,3] [2,3,2]  ==  True
   iguales [3,2,3] [2,3,4]  ==  False
   iguales [2,3] [4,5]      ==  False

Leer más…

Reconocimiento de subconjunto

Definir la función

   subconjunto :: Ord a => [a] -> [a] -> Bool

tal que subconjunto xs ys se verifica si xs es un subconjunto de ys. por ejemplo,

   subconjunto [3,2,3] [2,5,3,5]  ==  True
   subconjunto [3,2,3] [2,5,6,5]  ==  False

Leer más…