Ir al contenido principal

Área de la corona circular

Definir la función

   areaDeCoronaCircular :: Double -> Double -> Double

tal que (areaDeCoronaCircular r1 r2) es el área de una corona circular de radio interior r1 y radio exterior r2. Por ejemplo,

   areaDeCoronaCircular 1 2 == 9.42477796076938
   areaDeCoronaCircular 2 5 == 65.97344572538566
   areaDeCoronaCircular 3 5 == 50.26548245743669

Leer más…

Suma si todos los valores son justos

Definir la función

   sumaSiTodosJustos :: (Num a, Eq a) => [Maybe a] -> Maybe a

tal que (sumaSiTodosJustos xs) es justo la suma de todos los elementos de xs si todos son justos (es decir, si Nothing no pertenece a xs) y Nothing en caso contrario. Por ejemplo,

   sumaSiTodosJustos [Just 2, Just 5]           == Just 7
   sumaSiTodosJustos [Just 2, Just 5, Nothing]  == Nothing

Leer más…

Curso de introducción a la programación con Haskell y Python

Mañana comenzará en en este blog un curso práctico de introducción a la programación con Haskell y Python.

Diariamente, se publicará un ejercicio con sus soluciones en Haskell y en Python. El orden de los ejercicios se corresponde con el de los temas del curso de Programación funcional con Haskell. Además, en cada ejercicio se comentarán las diferencias entre ambos lenguajes y se irá extendiendo la tabla de equivalencia entre Haskell y Python.

Leer más…

Sumas de dos primos

Definir la sucesión

sumasDeDosPrimos :: [Integer]

cuyos elementos son los números que se pueden escribir como suma de dos números primos. Por ejemplo,

λ> take 23 sumasDeDosPrimos
[4,5,6,7,8,9,10,12,13,14,15,16,18,19,20,21,22,24,25,26,28,30,31]
λ> sumasDeDosPrimos !! (5*10^5)
862878

Leer más…

La sucesión de Thue-Morse

La serie de Thue-Morse comienza con el término [0] y sus siguientes términos se construyen añadiéndole al anterior su complementario. Los primeros términos de la serie son

[0]
[0,1]
[0,1,1,0]
[0,1,1,0,1,0,0,1]
[0,1,1,0,1,0,0,1,1,0,0,1,0,1,1,0]

De esta forma se va formando una sucesión

0,1,1,0,1,0,0,1,1,0,0,1,0,1,1,0,...

que se conoce como la sucesión de Thue-Morse.

Definir la sucesión

sucThueMorse :: [Int]

cuyos elementos son los de la sucesión de Thue-Morse. Por ejemplo,

λ> take 30 sucThueMorse
[0,1,1,0,1,0,0,1,1,0,0,1,0,1,1,0,1,0,0,1,0,1,1,0,0,1,1,0,1,0]
λ> map (sucThueMorse4 !!) [1234567..1234596]
[1,1,0,0,1,0,1,1,0,1,0,0,1,0,1,1,0,0,1,1,0,1,0,0,1,1,0,0,1,0]
λ> map (sucThueMorse4 !!) [4000000..4000030]
[1,0,0,1,0,1,1,0,0,1,1,0,1,0,0,1,0,1,1,0,1,0,0,1,1,0,0,1,0,1,1]

Comprobar con QuickCheck que si s(n) representa el término n-ésimo de la sucesión de Thue-Morse, entonces

s(2n)   = s(n)
s(2n+1) = 1 - s(n)

Leer más…

La serie de Thue-Morse

La serie de Thue-Morse comienza con el término [0] y sus siguientes términos se construyen añadiéndole al anterior su complementario (es decir, la lista obtenida cambiando el 0 por 1 y el 1 por 0). Los primeros términos de la serie son

[0]
[0,1]
[0,1,1,0]
[0,1,1,0,1,0,0,1]
[0,1,1,0,1,0,0,1,1,0,0,1,0,1,1,0]

Definir la lista

serieThueMorse :: [[Int]]

tal que sus elementos son los términos de la serie de Thue-Morse. Por ejemplo,

λ> take 4 serieThueMorse
[[0],[0,1],[0,1,1,0],[0,1,1,0,1,0,0,1]]

Leer más…

Números belgas

Un número n es k-belga si la sucesión cuyo primer elemento es k y cuyos elementos se obtienen sumando reiteradamente las cifras de n contiene a n.

El 18 es 0-belga, porque a partir del 0 vamos a ir sumando sucesivamente 1, 8, 1, 8, ... hasta llegar o sobrepasar el 18: 0, 1, 9, 10, 18, ... Como se alcanza el 18, resulta que el 18 es 0-belga.

El 19 no es 1-belga, porque a partir del 1 vamos a ir sucesivamente 1, 9, 1, 9, ... hasta llegar o sobrepasar el 18: 0, 1, 10, 11, 20, 21, ... Como no se alcanza el 19, resulta que el 19 no es 1-belga.

Definir la función

esBelga :: Int -> Int -> Bool

tal que (esBelga k n) se verifica si n es k-belga. Por ejemplo,

esBelga 0 18                              ==  True
esBelga 1 19                              ==  False
esBelga 0 2016                            ==  True
[x | x <- [0..30], esBelga 7 x]           ==  [7,10,11,21,27,29]
[x | x <- [0..30], esBelga 10 x]          ==  [10,11,20,21,22,24,26]
length [n | n <- [1..10^6], esBelga 0 n]  ==  272049

Comprobar con QuickCheck que para todo número entero positivo n, si k es el resto de n entre la suma de los dígitos de n, entonces n es k-belga.


Leer más…

Huecos maximales entre primos

El hueco de un número primo p es la distancia entre p y primo siguiente de p. Por ejemplo, el hueco de 7 es 4 porque el primo siguiente de 7 es 11 y 4 = 11-7. Los huecos de los primeros números son

Primo Hueco
 2    1
 3    2
 7    4
11    2

El hueco de un número primo p es maximal si es mayor que huecos de todos los números menores que p. Por ejemplo, 4 es un hueco maximal de 7 ya que los huecos de los primos menores que 7 son 1 y 2 y ambos son menores que 4. La tabla de los primeros huecos maximales es

Primo Hueco
  2    1
  3    2
  7    4
 23    6
 89    8
113   14
523   18
887   20

Definir la sucesión

primosYhuecosMaximales :: [(Integer,Integer)]

cuyos elementos son los números primos con huecos maximales junto son sus huecos. Por ejemplo,

λ> take 8 primosYhuecosMaximales
[(2,1),(3,2),(7,4),(23,6),(89,8),(113,14),(523,18),(887,20)]
λ> primosYhuecosMaximales !! 20
(2010733,148)

Leer más…

La función indicatriz de Euler

La indicatriz de Euler (también función φ de Euler) es una función importante en teoría de números. Si n es un entero positivo, entonces φ(n) se define como el número de enteros positivos menores o iguales a n y coprimos con n. Por ejemplo, φ(36) = 12 ya que los números menores o iguales a 36 y coprimos con 36 son doce: 1, 5, 7, 11, 13, 17, 19, 23, 25, 29, 31, y 35.

Definir la función

phi :: Integer -> Integer

tal que (phi n) es igual a φ(n). Por ejemplo,

phi 36                          ==  12
map phi [10..20]                ==  [4,10,4,12,6,8,8,16,6,18,8]
phi (3^10^5) `mod` (10^9)       ==  681333334
length (show (phi (10^(10^5)))) == 100000

Comprobar con QuickCheck que, para todo n > 0, φ(10^n) tiene n dígitos.


Leer más…

Sucesión de suma de cuadrados de los dígitos

Definir la función

sucSumaCuadradosDigitos :: Integer -> [Integer]

tal que (sucSumaCuadradosDigitos n) es la sucesión cuyo primer término es n y los restantes se obtienen sumando los cuadrados de los dígitos de su término anterior. Por ejemplo,

λ> take 20 (sucSumaCuadradosDigitos1 2000)
[2000,4,16,37,58,89,145,42,20,4,16,37,58,89,145,42,20,4,16,37]
λ> take 20 (sucSumaCuadradosDigitos 1976)
[1976,167,86,100,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]
λ> sucSumaCuadradosDigitos 2000 !! (10^9)
20

Leer más…

Potencias perfectas

Un número natural n es una potencia perfecta si existen dos números naturales m > 1 y k > 1 tales que n = m^k. Las primeras potencias perfectas son

4 = 2², 8 = 2³, 9 = 3², 16 = 2, 25 = 5², 27 = 3³, 32 = 2,
36 = 6², 49 = 7², 64 = 2, ...

Definir la sucesión

potenciasPerfectas :: [Integer]

cuyos términos son las potencias perfectas. Por ejemplo,

take 10 potenciasPerfectas  ==  [4,8,9,16,25,27,32,36,49,64]
potenciasPerfectas !! 3000  ==  7778521

Definir el procedimiento

grafica :: Int -> IO ()

tal que (grafica n) es la representación gráfica de las n primeras potencias perfectas. Por ejemplo, para (grafica 30) dibuja

Potencias perfectas


Leer más…

Sumas alternas de factoriales

Las primeras sumas alternas de los factoriales son números primos; en efecto,

3! - 2! + 1! = 5
4! - 3! + 2! - 1! = 19
5! - 4! + 3! - 2! + 1! = 101
6! - 5! + 4! - 3! + 2! - 1! = 619
7! - 6! + 5! - 4! + 3! - 2! + 1! = 4421
8! - 7! + 6! - 5! + 4! - 3! + 2! - 1! = 35899

son primos, pero

9! - 8! + 7! - 6! + 5! - 4! + 3! - 2! + 1! = 326981

no es primo.

Definir las funciones

sumaAlterna         :: Integer -> Integer
sumasAlternas       :: [Integer]
conSumaAlternaPrima :: [Integer]

tales que

  • (sumaAlterna n) es la suma alterna de los factoriales desde n hasta 1. Por ejemplo,
sumaAlterna 3  ==  5
sumaAlterna 4  ==  19
sumaAlterna 5  ==  101
sumaAlterna 6  ==  619
sumaAlterna 7  ==  4421
sumaAlterna 8  ==  35899
sumaAlterna 9  ==  326981
sumaAlterna (5*10^4) `mod` (10^6) == 577019
  • sumasAlternas es la sucesión de las sumas alternas de factoriales. Por ejemplo,
λ> take 10 sumasAlternas1
[0,1,1,5,19,101,619,4421,35899,326981]
  • conSumaAlternaPrima es la sucesión de los números cuya suma alterna de factoriales es prima. Por ejemplo,
λ> take 8 conSumaAlternaPrima
[3,4,5,6,7,8,10,15]

Leer más…

Primos con cubos

Un primo con cubo es un número primo p para el que existe algún entero positivo n tal que la expresión n^3 + n^2p es un cubo perfecto. Por ejemplo, 19 es un primo con cubo ya que 8^3 + 8^2×19 = 12^3.

Definir la sucesión

primosConCubos :: [Integer]

tal que sus elementos son los primos con cubo. Por ejemplo,

λ> take 6 primosConCubos
[7,19,37,61,127,271]
λ> length (takeWhile (<1000000) primosConCubos)
173

Leer más…

Primos cubanos

Un primo cubano es un número primo que se puede escribir como diferencia de dos cubos consecutivos. Por ejemplo, el 61 es un primo cubano porque es primo y 61 = 5³-4³.

Definir la sucesión

cubanos :: [Integer]

tal que sus elementos son los números cubanos. Por ejemplo,

λ> take 15 cubanos
[7,19,37,61,127,271,331,397,547,631,919,1657,1801,1951,2269]

Leer más…

Clausura transitiva de una relación binaria

La clausura transitiva de una relación binaria R es la relación transitiva que contiene a R. Se puede calcular usando la composición de relaciones. Veamos un ejemplo, en el que (R ∘ S) representa la composición de R y S: sea

R = [(1,2),(2,5),(5,6)]

la relación R no es transitiva ya que (1,2) y (1,5) pertenecen a R pero (1,5) no pertenece; sea

R1 = R  (R  R)
= [(1,2),(2,5),(5,6),(1,5),(2,6)]

la relación R1 tampoco es transitiva ya que (1,2) y (2,6) pertenecen a R pero (1,6) no pertenece; sea

R2 = R1  (R1  R1)
= [(1,2),(2,5),(5,6),(1,5),(2,6),(1,6)]

La relación R2 es transitiva y contiene a R. Además, R2 es la clausura transitiva de R.

Definir la función

clausuraTransitiva :: Ord a => [(a,a)] -> [(a,a)]

tal que (clausuraTransitiva r) es la clausura transitiva de r; es decir, la menor relación transitiva que contiene a r. Por ejemplo,

λ> clausuraTransitiva [(1,2),(2,5),(5,6)]
[(1,2),(2,5),(5,6),(1,5),(2,6),(1,6)]
λ> clausuraTransitiva [(1,2),(2,5),(5,6),(6,3)]
[(1,2),(2,5),(5,6),(6,3),(1,5),(2,6),(5,3),(1,6),(2,3),(1,3)]
λ> length (clausuraTransitiva [(n,n+1) | n <- [1..100]])
5050

Leer más…

Transitividad de una relación

Una relación binaria R sobre un conjunto A es transitiva cuando se cumple que siempre que un elemento se relaciona con otro y éste último con un tercero, entonces el primero se relaciona con el tercero.

Definir la función

transitiva :: Ord a => [(a,a)] -> Bool

tal que (transitiva r) se verifica si la relación r es transitiva. Por ejemplo,

transitiva [(1,1),(1,3),(3,1),(3,3),(5,5)]  ==  True
transitiva [(1,1),(1,3),(3,1),(5,5)]        ==  False
transitiva [(n,n) | n <- [1..10^4]]         ==  True

Leer más…

Composición de relaciones binarias

Las relaciones binarias en un conjunto A se pueden representar mediante conjuntos de pares de elementos de A. Por ejemplo, la relación de divisibilidad en el conjunto {1,2,3,6} se representa por

[(1,1),(1,2),(1,3),(1,6),(2,2),(2,6),(3,3),(3,6),(6,6)]

La composición de dos relaciones binarias R y S en el conjunto A es la relación binaria formada por los pares (x,y) para los que existe un z tal que (x,z) ∈ R y (z,y) ∈ S.

Definir la función

composicion :: Ord a => [(a,a)] -> [(a,a)] -> [(a,a)]

tal que (composicion r s) es la composición de las relaciones binarias r y s. Por ejemplo,

λ> composicion [(1,2)] [(2,3),(2,4)]
[(1,3),(1,4)]
λ> composicion [(1,2),(5,2)] [(2,3),(2,4)]
[(1,3),(1,4),(5,3),(5,4)]
λ> composicion [(1,2),(1,4),(1,5)] [(2,3),(4,3)]
[(1,3)]

Nota: Se supone que las relaciones binarias son listas sin elementos repetidos.


Leer más…

Número de particiones en k subconjuntos

Definir la función

numeroParticiones :: Int -> Int -> Int

tal que (numeroParticiones n k) es el número de particiones de conjunto de n elementos en k subconjuntos disjuntos. Por ejemplo,

numeroParticiones 3 2    ==  3
numeroParticiones 3 3    ==  1
numeroParticiones 4 3    ==  6
numeroParticiones 4 1    ==  1
numeroParticiones 4 4    ==  1
numeroParticiones 91 89  ==  8139495

Leer más…

Particiones en k subconjuntos

Definir la función

particiones :: [a] -> Int -> [[[a]]]

tal que (particiones xs k) es la lista de las particiones de xs en k subconjuntos disjuntos. Por ejemplo,

λ> particiones [2,3,6] 2
[[[2],[3,6]],[[2,3],[6]],[[3],[2,6]]]
λ> particiones [2,3,6] 3
[[[2],[3],[6]]]
λ> particiones [4,2,3,6] 3
[[[4],[2],[3,6]],[[4],[2,3],[6]],[[4],[3],[2,6]],
[[4,2],[3],[6]],[[2],[4,3],[6]],[[2],[3],[4,6]]]
λ> particiones [4,2,3,6] 1
[[[4,2,3,6]]]
λ> particiones [4,2,3,6] 4
[[[4],[2],[3],[6]]]

Leer más…

Mayor semiprimo menor que n

Un número semiprimo es un número natural es producto de dos números primos no necesariamente distintos. Por ejemplo, 26 es semiprimo (porque 26 = 2·13) y 49 también lo es (porque 49 = 7·7).

Definir la función

mayorSemiprimoMenor :: Integer -> Integer

tal que (mayorSemiprimoMenor n) es el mayor semiprimo menor que n (suponiendo que n > 4). Por ejemplo,

mayorSemiprimoMenor 27      ==  26
mayorSemiprimoMenor 50      ==  49
mayorSemiprimoMenor 49      ==  46
mayorSemiprimoMenor (10^15) == 999999999999998

Leer más…

Intersecciones parciales

Definir la función

interseccionParcial :: Ord a => Int -> [[a]] -> [a]

tal que (interseccionParcial n xss) es la lista de los elementos que pertenecen al menos a n conjuntos de xss. Por ejemplo,

interseccionParcial 1 [[3,4],[4,5,9],[5,4,7]]  == [3,4,5,9,7]
interseccionParcial 2 [[3,4],[4,5,9],[5,4,7]]  == [4,5]
interseccionParcial 3 [[3,4],[4,5,9],[5,4,7]]  == [4]
interseccionParcial 4 [[3,4],[4,5,9],[5,4,7]]  == []

Leer más…

Unión e intersección general de conjuntos

Definir las funciones

unionGeneral        :: Eq a => [[a]] -> [a]
interseccionGeneral :: Eq a => [[a]] -> [a]

tales que

  • (unionGeneral xs) es la unión de los conjuntos de la lista de conjuntos xs (es decir, el conjunto de los elementos que pertenecen a alguno de los elementos de xs). Por ejemplo,
unionGeneral []                    ==  []
unionGeneral [[1]]                 ==  [1]
unionGeneral [[1],[1,2],[2,3]]     ==  [1,2,3]
unionGeneral ([[x] | x <- [1..9]]) ==  [1,2,3,4,5,6,7,8,9]
  • (interseccionGeneral xs) es la intersección de los conjuntos de la lista de conjuntos xs (es decir, el conjunto de los elementos que pertenecen a todos los elementos de xs). Por ejemplo,
interseccionGeneral [[1]]                      ==  [1]
interseccionGeneral [[2],[1,2],[2,3]]          ==  [2]
interseccionGeneral [[2,7,5],[1,5,2],[5,2,3]]  ==  [2,5]
interseccionGeneral ([[x] | x <- [1..9]])      ==  []
interseccionGeneral (replicate (10^6) [1..5])  ==  [1,2,3,4,5]

Leer más…

Ceros finales del factorial

Definir la función

cerosDelFactorial :: Integer -> Integer

tal que (cerosDelFactorial n) es el número de ceros en que termina el factorial de n. Por ejemplo,

cerosDelFactorial 24                         == 4
cerosDelFactorial 25                         == 6
length (show (cerosDelFactorial (10^70000))) == 70000

Leer más…

Números autodescriptivos

Un número n es autodescriptivo cuando para cada posición k de n (empezando a contar las posiciones a partir de 0), el dígito en la posición k es igual al número de veces que ocurre k en n. Por ejemplo, 1210 es autodescriptivo porque tiene 1 dígito igual a "0", 2 dígitos iguales a "1", 1 dígito igual a "2" y ningún dígito igual a "3".

Definir la función

autodescriptivo :: Integer -> Bool

tal que (autodescriptivo n) se verifica si n es autodescriptivo. Por ejemplo,

λ> autodescriptivo 1210
True
λ> [x | x <- [1..100000], autodescriptivo x]
[1210,2020,21200]
λ> autodescriptivo 9210000001000
True

Leer más…

Aproximación del número pi

Una forma de aproximar el número π es usando la siguiente igualdad: \[ \frac{\pi}{2} = 1 + \frac{1}{3} + \frac{1 \cdot 2}{3 \cdot 5} + \frac{1 \cdot 2 \cdot 3}{3 \cdot 5 \cdot 7} + \frac{1 \cdot 2 \cdot 3 \cdot 4}{3 \cdot 5 \cdot 7 \cdot 9} + \cdots \]

Es decir, la serie cuyo término general n-ésimo es el cociente entre el producto de los primeros n números y los primeros n números impares: \[ s(n) = \frac{\prod\limits_{i=1}^n i}{\prod\limits_{i=1}^n (2i + 1)} \]

Definir la función

aproximaPi :: Integer -> Double

tal que (aproximaPi n) es la aproximación del número π calculada con la serie anterior hasta el término n-ésimo. Por ejemplo,

aproximaPi 10     == 3.1411060206
aproximaPi 20     == 3.1415922987403397
aproximaPi 30     == 3.1415926533011596
aproximaPi 40     == 3.1415926535895466
aproximaPi 50     == 3.141592653589793
aproximaPi (10^4) == 3.141592653589793
pi                == 3.141592653589793

Leer más…

Pandigitales primos

Un número con n dígitos es pandigital si contiene todos los dígitos del 1 a n exactamente una vez. Por ejemplo, 2143 es un pandigital con 4 dígitos y, además, es primo.

Definir la lista

pandigitalesPrimos :: [Int]

tal que sus elementos son los números pandigitales primos, ordenados de mayor a menor. Por ejemplo,

take 3 pandigitalesPrimos       ==  [7652413,7642513,7641253]
2143 `elem` pandigitalesPrimos  ==  True
length pandigitalesPrimos       ==  538

Leer más…

Codificación de Fibonacci

La codificación de Fibonacci de un número n es una cadena d = d(0)d(1)...d(k-1)d(k) de ceros y unos tal que

n = d(0)·F(2) + d(1)·F(3) +...+ d(k-1)·F(k+1)
d(k-1) = d(k) = 1

donde F(i) es el i-ésimo término de la sucesión de Fibonacci

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, ...

Por ejemplo, la codificación de Fibonacci de 4 es "1011" ya que los dos últimos elementos son iguales a 1 y

1·F(2) + 0·F(3) + 1·F(4) = 1·1 + 0·2 + 1·3 = 4

La codificación de Fibonacci de los primeros números se muestra en la siguiente tabla

 1  = 1     = F(2)           ≡       11
 2  = 2     = F(3)           ≡      011
 3  = 3     = F(4)           ≡     0011
 4  = 1+3   = F(2)+F(4)      ≡     1011
 5  = 5     = F(5)           ≡    00011
 6  = 1+5   = F(2)+F(5)      ≡    10011
 7  = 2+5   = F(3)+F(5)      ≡    01011
 8  = 8     = F(6)           ≡   000011
 9  = 1+8   = F(2)+F(6)      ≡   100011
10  = 2+8   = F(3)+F(6)      ≡   010011
11  = 3+8   = F(4)+F(6)      ≡   001011
12  = 1+3+8 = F(2)+F(4)+F(6) ≡   101011
13  = 13    = F(7)           ≡  0000011
14  = 1+13  = F(2)+F(7)      ≡  1000011

Definir la función

codigoFib :: Integer -> String

tal que (codigoFib n) es la codificación de Fibonacci del número n. Por ejemplo,

λ> codigoFib 65
"0100100011"
λ> [codigoFib n | n <- [1..7]]
["11","011","0011","1011","00011","10011","01011"]

Comprobar con QuickCheck las siguientes propiedades:

  • Todo entero positivo se puede descomponer en suma de números de la sucesión de Fibonacci.
  • Las codificaciones de Fibonacci tienen como mínimo 2 elementos.
  • En las codificaciones de Fibonacci, la cadena "11" sólo aparece una vez y la única vez que aparece es al final.

Leer más…

La sucesión del reloj astronómico de Praga

La cadena infinita "1234321234321234321...", formada por la repetición de los dígitos 123432, tiene una propiedad (en la que se basa el funcionamiento del reloj astronómico de Praga: la cadena se puede partir en una sucesión de números, de forma que la suma de los dígitos de dichos números es la sucesión de los números naturales, como se observa a continuación:

1, 2, 3, 4, 32, 123, 43, 2123, 432, 1234, 32123, ...
1, 2, 3, 4,  5,   6,  7,    8,   9,   10,    11, ...

Definir la lista

reloj :: [Integer]

cuyos elementos son los términos de la sucesión anterior. Por ejemplo,

λ> take 11 reloj
[1,2,3,4,32,123,43,2123,432,1234,32123]
λ> (reloj !! 1000) `mod` (10^50)
23432123432123432123432123432123432123432123432123

Nota: La relación entre la sucesión y el funcionamiento del reloj se puede ver en The Mathematics Behind Prague's Horloge Introduction.


Leer más…

Método de bisección para aproximar raíces de funciones

El método de bisección para calcular un cero de una función en el intervalo [a,b] se basa en el teorema de Bolzano:

"Si f(x) es una función continua en el intervalo [a, b], y si, además, en los extremos del intervalo la función f(x) toma valores de signo opuesto (f(a) * f(b) < 0), entonces existe al menos un valor c en (a, b) para el que f(c) = 0".

El método para calcular un cero de la función f en el intervalo [a,b] con un error menor que e consiste en tomar el punto medio del intervalo c = (a+b)/2 y considerar los siguientes casos:

  • Si |f(c)| < e, hemos encontrado una aproximación del punto que anula f en el intervalo con un error aceptable.
  • Si f(c) tiene signo distinto de f(a), repetir el proceso en el intervalo [a,c].
  • Si no, repetir el proceso en el intervalo [c,b].

Definir la función

biseccion :: (Double -> Double) -> Double -> Double -> Double -> Double

tal que (biseccion f a b e) es una aproximación del punto del intervalo [a,b] en el que se anula la función f, con un error menor que e, calculada mediante el método de la bisección. Por ejemplo,

biseccion (\x -> x^2 - 3) 0 5 0.01             ==  1.7333984375
biseccion (\x -> x^3 - x - 2) 0 4 0.01         ==  1.521484375
biseccion cos 0 2 0.01                         ==  1.5625
biseccion (\x -> log (50-x) - 4) (-10) 3 0.01  ==  -5.125

Leer más…

Números para los que el mcm de 1,2,...n-1 coincide con el de 1,2,...,n

Un número n es especial si mcm(1,2,...,n-1) = mcm(1,2,...,n). Por ejemplo, el 6 es especial ya que

mcm(1,2,3,4,5) = 60 = mcm(1,2,3,4,5,6)

Definir la sucesión

especiales :: [Integer]

cuyos términos son los números especiales. Por ejemplo,

take 10 especiales     ==  [1,6,10,12,14,15,18,20,21,22]
especiales !! 50       ==  84
especiales !! 500      ==  638
especiales !! 5000     ==  5806
especiales !! 50000    ==  55746

Leer más…

Cálculo aproximado de integrales definidas

La integral definida de una función f entre los límites a y b puede calcularse mediante la regla del rectángulo usando la fórmula \[ h \cdot \left( f\left(a + \frac{h}{2}\right) + f\left(a + h + \frac{h}{2}\right) + f\left(a + 2h + \frac{h}{2}\right) + \dots + f\left(a + nh + \frac{h}{2}\right) \right) \] con \[ a + n h + \frac{h}{2} \leq b < a + (n+1) h + \frac{h}{2} \] y usando valores pequeños para \(h\).

Definir la función

integral :: (Fractional a, Ord a) => a -> a -> (a -> a) -> a -> a

tal que (integral a b f h) es el valor de dicha expresión. Por ejemplo, el cálculo de la integral de f(x) = x^3 entre 0 y 1, con paso 0.01, es

integral 0 1 (^3) 0.01  ==  0.24998750000000042

Otros ejemplos son

integral 0 1 (^4) 0.01                   ==  0.19998333362500048
integral 0 1 (\x -> 3*x^2 + 4*x^3) 0.01  ==  1.9999250000000026
log 2 - integral 1 2 (\x -> 1/x) 0.01         ==  3.124931644782336e-6
pi - 4 * integral 0 1 (\x -> 1/(x^2+1)) 0.01  ==  -8.333333331389525e-6

Leer más…

Menor número con una cantidad dada de divisores

El menor número con 2 divisores es el 2, ya que tiene 2 divisores (el 1 y el 2) y el anterior al 2 (el 1) sólo tiene 1 divisor (el 1).

El menor número con 4 divisores es el 6, ya que tiene 4 divisores (el 1, 2, 3 y 6) y sus anteriores (el 1, 2, 3, 4 y 5) tienen menos de 4 divisores (tienen 1, 1, 1, 3 y 1, respectivamente).

El menor número con 8 divisores es el 24, ya que tiene 8 divisores (el 1, 2, 3, 4, 6, 8, 12 y 24) y sus anteriores (del 1 al 23) tienen menos de 8 divisores.

El menor número con 16 divisores es el 120, ya que tiene 16 divisores (el 1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 20, 24, 30, 40, 60 y 120) y sus anteriores (del 1 al 119) tienen menos de 16 divisores.

Definir la función

menor :: Integer -> Integer

tal que (menor n) es el menor número con 2^n divisores. Por ejemplo,

menor 1  ==  2
menor 2  ==  6
menor 3  ==  24
menor 4  ==  120
length (show (menor (4*10^4)))  ==  207945

Comprobar con QuickCheck que, para todo k >=0, (menor (2^k)) es un divisor de (menor (2^(k+1))).

Nota: Este ejercicio está basado en el problema N1 de la Olimpíada Internacional de Matemáticas (IMO) del 2011.


Leer más…

Distancia esperada entre dos puntos de un cuadrado unitario

Definir, por simulación, la función

distanciaEsperada :: Int -> IO Double

tal que (distanciaEsperada n) es la distancia esperada entre n puntos del cuadrado unitario de vértices opuestos (0,0) y (1,1), elegidos aleatoriamente. Por ejemplo,

distanciaEsperada 10     ==  0.43903617921423593
distanciaEsperada 10     ==  0.6342350621260004
distanciaEsperada 100    ==  0.5180418995364429
distanciaEsperada 100    ==  0.5288261085653962
distanciaEsperada 1000   ==  0.5143804432569616
distanciaEsperada 10000  ==  0.5208360147922616

El valor exacto de la distancia esperada es \[ ve = \frac{\sqrt{2} + 2 + 5 \log(1 + \sqrt{2})}{15} \approx 0.5214054331647207 \]

Definir la función

graficaDistanciaEsperada :: [Int] -> IO ()

tal que (graficaDistanciaEsperada ns) dibuja las gráficas de los pares (n, distanciaEsperada n) para n en la lista creciente ns junto con la recta y = ve, donde ve es el valor exacto. Por ejemplo, (graficaDistanciaEsperada [10,30..4000]) dibuja

Distancia esperada entre dos puntos de un cuadrado unitario


Leer más…

Representación matricial de relaciones binarias

Dada una relación r sobre un conjunto de números enteros, la matriz asociada a r es una matriz booleana p (cuyos elementos son True o False), tal que p(i,j) = True si y sólo si i está relacionado con j mediante la relación r.

Las relaciones binarias homogéneas y las matrices booleanas se pueden representar por

type Relacion = ([Int],[(Int,Int)])
type Matriz = Array (Int,Int) Bool

Definir la función

matrizRB:: Relacion -> Matriz

tal que (matrizRB r) es la matriz booleana asociada a r. Por ejemplo,

λ> matrizRB ([1..3],[(1,1), (1,3), (3,1), (3,3)])
array ((1,1),(3,3)) [((1,1),True) ,((1,2),False),((1,3),True),
((2,1),False),((2,2),False),((2,3),False),
((3,1),True) ,((3,2),False),((3,3),True)]
λ> matrizRB ([1..3],[(1,3), (3,1)])
array ((1,1),(3,3)) [((1,1),False),((1,2),False),((1,3),True),
((2,1),False),((2,2),False),((2,3),False),
((3,1),True) ,((3,2),False),((3,3),False)]
λ> let n = 10^4 in matrizRB3 ([1..n],[(1,n),(n,1)]) ! (n,n)
False

Leer más…

Codificación de Gödel

Dada una lista de números naturales xs, codificación de Gödel de xs se obtiene multiplicando las potencias de los primos sucesivos, siendo los exponentes los sucesores de los elementos de xs. Por ejemplo, si xs = [6,0,4], la codificación de xs es \[2^7 \times 3^1 \times 5^5 = 1200000 \]

Definir las funciones

codificaG   :: [Integer] -> Integer
decodificaG :: Integer -> [Integer]

tales que

  • (codificaG xs) es la codificación de Gödel de xs. Por ejemplo,
codificaG [6,0,4]            ==  1200000
codificaG [3,1,1]            ==  3600
codificaG [3,1,0,0,0,0,0,1]  ==  4423058640
codificaG [1..6]             ==  126111168580452537982500
  • (decodificaG n) es la lista xs cuya codificación es n. Por ejemplo,
decodificaG 1200000                   ==  [6,0,4]
decodificaG 3600                      ==  [3,1,1]
decodificaG 4423058640                ==  [3,1,0,0,0,0,0,1]
decodificaG 126111168580452537982500  ==  [1,2,3,4,5,6]

Comprobar con QuickCheck que ambas funciones son inversas; es decir,

decodificaG (codificaG xs) = xs
codificaG (decodificaG n) = n

Leer más…

Primos circulares

Un primo circular es un número tal que todas las rotaciones de dígitos producen números primos. Por ejemplo, 195 es un primo circular ya que las rotaciones de sus dígitos son 197, 971 y 719 y los tres números son primos.

Definir la lista

circulares :: [Integer]

cuyo valor es la lista de los números primos circulares. Por ejemplo,

take 16 circulares == [2,3,5,7,11,13,17,31,37,71,73,79,97,113,131,197]
circulares !! 50   == 933199

Leer más…

Diccionario de frecuencias

Definir la función

frecuencias :: Ord a => [a] -> Map a Int

tal que (frecuencias xs) es el diccionario formado por los elementos de xs junto con el número de veces que aparecen en xs. Por ejemplo,

λ> frecuencias "sosos"
fromList [('o',2),('s',3)]
λ> frecuencias (show (10^100))
fromList [('0',100),('1',1)]
λ> frecuencias (take (10^6) (cycle "abc"))
fromList [('a',333334),('b',333333),('c',333333)]
λ> size (frecuencias (take (10^6) (cycle [1..10^6])))
1000000

Leer más…

Descomposiciones con sumandos 1 ó 2

Definir la funciones

sumas  :: Int -> [[Int]]
nSumas :: Int -> Integer

tales que

  • (sumas n) es la lista de las descomposiciones de n como sumas cuyos sumandos son 1 ó 2. Por ejemplo,
sumas 1            ==  [[1]]
sumas 2            ==  [[1,1],[2]]
sumas 3            ==  [[1,1,1],[1,2],[2,1]]
sumas 4            ==  [[1,1,1,1],[1,1,2],[1,2,1],[2,1,1],[2,2]]
length (sumas 26)  ==  196418
length (sumas 33)  ==  5702887
  • (nSumas n) es el número de descomposiciones de n como sumas cuyos sumandos son 1 ó 2. Por ejemplo,
nSumas 4                      ==  5
nSumas 123                    ==  36726740705505779255899443
length (show (nSumas 123456)) ==  25801

Leer más…

Suma de los elementos de las diagonales matrices espirales

Empezando con el número 1 y moviéndose en el sentido de las agujas del reloj se obtienen las matrices espirales

|1 2|   |7 8 9|   | 7  8  9 10|   |21 22 23 24 25|
|4 3|   |6 1 2|   | 6  1  2 11|   |20  7  8  9 10|
        |5 4 3|   | 5  4  3 12|   |19  6  1  2 11|
                  |16 15 14 13|   |18  5  4  3 12|
                                  |17 16 15 14 13|

La suma los elementos de sus diagonales es

+ en la 2x2: 1+3+2+4               =  10
+ en la 3x3: 1+3+5+7+9             =  25
+ en la 4x4: 1+2+3+4+7+10+13+16    =  56
+ en la 5x5: 1+3+5+7+9+13+17+21+25 = 101

Definir la función

sumaDiagonales :: Integer -> Integer

tal que (sumaDiagonales n) es la suma de los elementos en las diagonales de la matriz espiral de orden nxn. Por ejemplo.

sumaDiagonales 1         ==  1
sumaDiagonales 2         ==  10
sumaDiagonales 3         ==  25
sumaDiagonales 4         ==  56
sumaDiagonales 5         ==  101
sumaDiagonales (10^6)    ==  666667166668000000
sumaDiagonales (1+10^6)  ==  666669166671000001

sumaDiagonales (10^2)  ==         671800
sumaDiagonales (10^3)  ==        667168000
sumaDiagonales (10^4)  ==       666716680000
sumaDiagonales (10^5)  ==      666671666800000
sumaDiagonales (10^6)  ==     666667166668000000
sumaDiagonales (10^7)  ==    666666716666680000000
sumaDiagonales (10^8)  ==   666666671666666800000000
sumaDiagonales (10^9)  ==  666666667166666668000000000

Comprobar con QuickCheck que el último dígito de (sumaDiagonales n) es 0, 4 ó 6 si n es par y es 1, 5 ó 7 en caso contrario.


Leer más…

Término ausente en una progresión aritmética

Una progresión aritmética es una sucesión de números tales que la diferencia de dos términos sucesivos cualesquiera de la sucesión es constante.

Definir la función

ausente :: Integral a => [a] -> a

tal que (ausente xs) es el único término ausente de la progresión aritmética xs. Por ejemplo,

ausente [3,7,9,11]               ==  5
ausente [3,5,9,11]               ==  7
ausente [3,5,7,11]               ==  9
ausente ([1..9]++[11..])         ==  10
ausente ([1..10^6] ++ [2+10^6])  ==  1000001

Nota. Se supone que la lista tiene al menos 3 elementos, que puede ser infinita y que sólo hay un término de la progresión aritmética que no está en la lista.


Leer más…

Polinomios de Bell

Los polinomios de Bell forman una sucesión de polinomios, definida como sigue:

  • B₀(x) = 1 (polinomio unidad)
  • Bₙ(x) = x·[Bₙ(x) + Bₙ'(x)] (donde Bₙ'(x) es la derivada de Bₙ(x))

Por ejemplo,

B₀(x) = 1                     = 1
B₁(x) = x·(1+0)               = x
B₂(x) = x·(x+1)               = x²+x
B₃(x) = x·(x²+x+2x+1)         = x³+3x²+x
B₄(x) = x·(x³+3x²+x+3x²+6x+1) = x⁴+6x³+7x²+x

Definir la función

polBell :: Integer -> Polinomio Integer

tal que (polBell n) es el polinomio de Bell de grado n. Por ejemplo,

polBell 4                    ==  x^4 + 6*x^3 + 7*x^2 + 1*x
coeficiente 2 (polBell 4)    ==  7
coeficiente 2 (polBell 30)   ==  536870911
coeficiente 1 (polBell 1000) == 1
length (show (coeficiente 9 (polBell 2000)))  ==  1903

Notas: Se usa la librería I1M.PolOperaciones. Además, en el último ejemplo se usa la función coeficiente tal que (coeficiente k p) es el coeficiente del término de grado k en el polinomio p definida por

coeficiente :: Num a => Int -> Polinomio a -> a
coeficiente k p | k == n                 = coefLider p
                | k > grado (restoPol p) = 0
                | otherwise              = coeficiente k (restoPol p)
                where n = grado p

Leer más…

Ordenación de los racionales

En este ejercicio, representamos las fracciones mediante pares de números de enteros.

Definir la función

fraccionesOrd :: Integer -> [(Integer,Integer)]

tal que (fraccionesOrd n) es la lista con las fracciones propias positivas ordenadas, con denominador menor o igual que n. Por ejemplo,

λ> fraccionesOrd 4
[(1,4),(1,3),(1,2),(2,3),(3,4)]
λ> fraccionesOrd 5
[(1,5),(1,4),(1,3),(2,5),(1,2),(3,5),(2,3),(3,4),(4,5)]

Leer más…

Polinomios cuadráticos generadores de primos

En 1772, Euler publicó que el polinomio n² + n + 41 genera 40 números primos para todos los valores de n entre 0 y 39. Sin embargo, cuando n = 40, 40²+40+41 = 40(40+1)+41 es divisible por 41.

Usando ordenadores, se descubrió que el polinomio n² - 79n + 1601 genera 80 números primos para todos los valores de n entre 0 y 79.

Definir la función

generadoresMaximales :: Integer -> (Int,[(Integer,Integer)])

tal que (generadoresMaximales n) es el par (m,xs) donde

  • xs es la lista de pares (x,y) tales que n²+xn+y es uno de polinomios que genera un número máximo de números primos consecutivos a partir de cero entre todos los polinomios de la forma n²+an+b, con |a| ≤ n y |b| ≤ n y
  • m es dicho número máximo.

Por ejemplo,

generadoresMaximales    4  ==  ( 3,[(-2,3),(-1,3),(3,3)])
generadoresMaximales    6  ==  ( 5,[(-1,5),(5,5)])
generadoresMaximales   41  ==  (41,[(-1,41)])
generadoresMaximales   50  ==  (43,[(-5,47)])
generadoresMaximales  100  ==  (48,[(-15,97)])
generadoresMaximales  200  ==  (53,[(-25,197)])
generadoresMaximales 1650  ==  (80,[(-79,1601)])

Leer más…

El triángulo de Floyd

El triángulo de Floyd, llamado así en honor a Robert Floyd, es un triángulo rectángulo formado con números naturales. Para crear un triángulo de Floyd, se comienza con un 1 en la esquina superior izquierda, y se continúa escribiendo la secuencia de los números naturales de manera que cada línea contenga un número más que la anterior. Las 5 primeras líneas del triángulo de Floyd son

 1
 2   3
 4   5   6
 7   8   9  10
11  12  13  14  15

Definir la función

trianguloFloyd :: [[Integer]]

tal que trianguloFloyd es el triángulo de Floyd. Por ejemplo,

λ> take 4 trianguloFloyd
[[1],
 [2,3],
 [4,5,6],
 [7,8,9,10]]

(trianguloFloyd !! (10^5)) !! 0  ==  5000050001
(trianguloFloyd !! (10^6)) !! 0  ==  500000500001
(trianguloFloyd !! (10^7)) !! 0  ==  50000005000001

Leer más…

Matriz zigzagueante

La matriz zizagueante de orden n es la matriz cuadrada con n filas y n columnas y cuyos elementos son los n² primeros números naturales colocados de manera creciente a lo largo de las diagonales secundarias. Por ejemplo, La matriz zigzagueante de orden 5 es

 0  1  5  6 14
 2  4  7 13 15
 3  8 12 16 21
 9 11 17 20 22
10 18 19 23 24

La colocación de los elementos se puede ver gráficamente en este enlace.

Definir la función

zigZag :: Int -> Matrix Int

tal que (zigZag n) es la matriz zigzagueante de orden n. Por ejemplo,

λ> zigZag 5
                
  0  1  5  6 14 
  2  4  7 13 15 
  3  8 12 16 21 
  9 11 17 20 22 
 10 18 19 23 24 
                
λ> zigZag 4
             
  0  1  5  6 
  2  4  7 12 
  3  8 11 13 
  9 10 14 15 
             
λ> maximum (zigZag 1500)
2249999

Leer más…

Densidades de números abundantes, perfectos y deficientes

La n-ésima densidad de un tipo de número es el cociente entre la cantidad de los números entre 1 y n que son del tipo considerado y n. Por ejemplo, la 7-ésima densidad de los múltiplos de 3 es 2/7 ya que entre los 7 primeros números sólo 2 son múltiplos de 3.

Definir las funciones

densidades :: Int -> (Double,Double,Double)
graficas   :: Int -> IO ()

tales que

  • (densidades n) es la terna formada por la n-ésima densidad de los números abundantes (es decir, para que la suma de sus divisores propios es mayor que el número), de los números perfectos (es decir, para los que la suma de sus divisores propios es mayor que el número) y de los números deficientes (es decir, para los que la suma de sus divisores propios es menor que el número). Por ejemplo,
densidades 100     ==  (0.22,    2.0e-2, 0.76)
densidades 1000    ==  (0.246,   3.0e-3, 0.751)
densidades 10000   ==  (0.2488,  4.0e-4, 0.7508)
densidades 100000  ==  (0.24795, 4.0e-5, 0.75201)
densidades 1000000 ==  (0.247545,4.0e-6, 0.752451)
  • (graficas n) dibuja las gráficas de las k-ésimas densidades (para k entre 1 y n) de los números abundantes, de los números perfectos y de los números deficientes. Por ejemplo, (graficas 100) dibuja

Densidades de números abundantes, perfectos y deficientes

y (graficas 400) dibuja

Densidades de números abundantes, perfectos y deficientes


Leer más…

Sumas de divisores propios

Definir la función

sumaDivisoresHasta :: Integer -> [(Integer,Integer)]

tal que (sumaDivisoresHasta n) es la lista de los pares (a,b) tales que a es un número entre 1 y n y b es la suma de los divisores propios de a. Por ejemplo,

λ> sumaDivisoresHasta 12
[(1,0),(2,1),(3,1),(4,3),(5,1),(6,6),(7,1),(8,7),(9,4),(10,8),(11,1),(12,16)]
λ> last (sumaDivisoresHasta2 (10^7))
(10000000,14902280)

Leer más…

Parejas de números y divisores

Definir la función

divisoresHasta :: Int -> [(Int,Int)]

tal que (divisoresHasta n) es la lista de los pares (a,b) tales que a es un número entre 2 y n y b es un divisor propio de a. Por ejemplo,

λ> divisoresHasta 6
[(2,1),(3,1),(4,1),(5,1),(6,1),(4,2),(6,2),(6,3)]
λ> divisoresHasta 8
[(2,1),(3,1),(4,1),(5,1),(6,1),(7,1),(8,1),(4,2),(6,2),(8,2),(6,3),(8,4)]
λ> length (divisoresHasta 1234567)
16272448

Leer más…

Sumas de 4 primos

La conjetura de Waring sobre los números primos establece que todo número impar es primo o la suma de tres primos. La conjetura de Goldbach afirma que todo par mayor que 2 es la suma de dos números primos. Ambos ha estado abiertos durante más de 200 años. En este problema no se propone su solución, sino una tarea más simple: buscar una manera de expresar los enteros mayores que 7 como suma de exactamente cuatro números primos; es decir, definir la función

suma4primos :: Integer -> [(Integer,Integer,Integer,Integer)]

tal que (suma4primos n) es la lista de las cuádruplas crecientes (a,b,c,d) de números primos cuya suma es n (que se supone mayor que 7). Por ejemplo,

suma4primos 18             == [(2,2,3,11),(2,2,7,7),(3,3,5,7),(3,5,5,5)]
head (suma4primos (10^14)) == (2,2,23,99999999999973)

Comprobar con QuickCheck que todo entero mayor que 7 se puede escribir como suma de exactamente cuatro números primos.


Leer más…

Sucesión de sumas de dos números abundantes

Un número n es abundante si la suma de los divisores propios de n es mayor que n. El primer número abundante es el 12 (cuyos divisores propios son 1, 2, 3, 4 y 6 cuya suma es 16). Por tanto, el menor número que es la suma de dos números abundantes es el 24.

Definir la sucesión

sumasDeDosAbundantes :: [Integer]

cuyos elementos son los números que se pueden escribir como suma de dos números abundantes. Por ejemplo,

take 10 sumasDeDosAbundantes  ==  [24,30,32,36,38,40,42,44,48,50]

Leer más…

Suma de divisores

Definir la función

sumaDivisores :: Integer -> Integer

tal que (sumaDivisores x) es la suma de los divisores de x. Por ejemplo,

sumaDivisores 12  ==  28
sumaDivisores 25  ==  31
sumaDivisores (product [1..25])  ==  93383273455325195473152000
length (show (sumaDivisores (product [1..30000])))  ==  121289
maximum (map sumaDivisores [1..10^5])  ==  403200

Leer más…

Número de divisores

Definir la función

numeroDivisores :: Integer -> Integer

tal que (numeroDivisores x) es el número de divisores de x. Por ejemplo,

numeroDivisores 12  ==  6
numeroDivisores 25  ==  3
length (show (numeroDivisores (product [1..3*10^4])))  ==  1948

Leer más…

Conjunto de divisores

Definir la función

divisores :: Integer -> [Integer]

tal que (divisores x) es el conjunto de divisores de x. Por ejemplo,

divisores 30  ==  [1,2,3,5,6,10,15,30]
length (divisores (product [1..10]))  ==  270
length (divisores (product [1..25]))  ==  340032

Leer más…

Reconocimiento de potencias de 2

Definir la función

esPotenciaDeDos :: Integer -> Bool

tal que (esPotenciaDeDos n) se verifica si n es una potencia de dos (suponiendo que n es mayor que 0). Por ejemplo.

esPotenciaDeDos    1        == True
esPotenciaDeDos    2        == True
esPotenciaDeDos    6        == False
esPotenciaDeDos    8        == True
esPotenciaDeDos 1024        == True
esPotenciaDeDos 1026        == False
esPotenciaDeDos (2^(10^8))  == True

Leer más…

Particiones de enteros positivos

Una [partición)(https://en.wikipedia.org/wiki/Integer_partition) de un entero positivo n es una manera de escribir n como una suma de enteros positivos. Dos sumas que sólo difieren en el orden de sus sumandos se consideran la misma partición. Por ejemplo, 4 tiene cinco particiones: 4, 3+1, 2+2, 2+1+1 y 1+1+1+1.

Definir la función

particiones :: Int -> [[Int]]

tal que (particiones n) es la lista de las particiones del número n. Por ejemplo,

particiones 4  ==  [[4],[3,1],[2,2],[2,1,1],[1,1,1,1]]
particiones 5  ==  [[5],[4,1],[3,2],[3,1,1],[2,2,1],[2,1,1,1],[1,1,1,1,1]]
length (particiones 50)  ==  204226

Leer más…

Mínimo producto escalar

El producto escalar de los vectores [a1,a2,...,an] y [b1,b2,..., bn] es

a1 * b1 + a2 * b2 + ··· + an * bn.

Definir la función

menorProductoEscalar :: (Ord a, Num a) => [a] -> [a] -> a

tal que (menorProductoEscalar xs ys) es el mínimo de los productos escalares de las permutaciones de xs y de las permutaciones de ys. Por ejemplo,

menorProductoEscalar [3,2,5]  [1,4,6]    == 29
menorProductoEscalar [3,2,5]  [1,4,-6]   == -19
menorProductoEscalar [1..10^2] [1..10^2] == 171700
menorProductoEscalar [1..10^3] [1..10^3] == 167167000
menorProductoEscalar [1..10^4] [1..10^4] == 166716670000
menorProductoEscalar [1..10^5] [1..10^5] == 166671666700000
menorProductoEscalar [1..10^6] [1..10^6] == 166667166667000000

Leer más…

Puntos en regiones rectangulares

Los puntos se puede representar mediante pares de números

type Punto = (Int,Int)

y las regiones rectangulares mediante el siguiente tipo de dato

data Region = Rectangulo Punto  Punto
| Union      Region Region
| Diferencia Region Region
deriving (Eq, Show)

donde

  • (Rectangulo p1 p2) es la región formada por un rectángulo cuyo vértice superior izquierdo es p1 y su vértice inferior derecho es p2.
  • (Union r1 r2) es la región cuyos puntos pertenecen a alguna de las regiones r1 y r2.
  • (Diferencia r1 r2) es la región cuyos puntos pertenecen a la región r1 pero no pertenecen a la r2.

Definir la función

enRegion :: Punto -> Region -> Bool

tal que (enRegion p r) se verifica si el punto p pertenece a la región r. Por ejemplo, usando las regiones definidas por

r0021, r3051, r4162 :: Region
r0021 = Rectangulo (0,0) (2,1)
r3051 = Rectangulo (3,0) (5,1)
r4162 = Rectangulo (4,1) (6,2)

se tiene

enRegion (1,0) r0021                                   ==  True
enRegion (3,0) r0021                                   ==  False
enRegion (1,1) (Union r0021 r3051)                     ==  True
enRegion (4,0) (Union r0021 r3051)                     ==  True
enRegion (4,2) (Union r0021 r3051)                     ==  False
enRegion (3,1) (Diferencia r3051 r4162)                ==  True
enRegion (4,1) (Diferencia r3051 r4162)                ==  False
enRegion (4,2) (Diferencia r3051 r4162)                ==  False
enRegion (4,2) (Union (Diferencia r3051 r4162) r4162)  ==  True

Comprobar con QuickCheck que si el punto p está en la región r1, entonces, para cualquier región r2, p está en (Union r1 r2) y en (Union r2 r1), pero no está en (Diferencia r2 r1).


Leer más…

Clausura de un conjunto respecto de una función

Un conjunto A está cerrado respecto de una función f si para elemento x de A se tiene que f(x) pertenece a A. La clausura de un conjunto B respecto de una función f es el menor conjunto A que contiene a B y es cerrado respecto de f. Por ejemplo, la clausura de {0,1,2] respecto del opuesto es {-2,-1,0,1,2}.

Definir la función

clausura :: Ord a => (a -> a) -> [a] -> [a]

tal que (clausura f xs) es la clausura de xs respecto de f. Por ejemplo,

clausura (\x -> -x) [0,1,2]         ==  [-2,-1,0,1,2]
clausura (\x -> (x+1) `mod` 5) [0]  ==  [0,1,2,3,4]
length (clausura (\x -> (x+1) `mod` (10^6)) [0]) == 1000000

Leer más…

Producto cartesiano de una familia de conjuntos

Definir la función

producto :: [[a]] -> [[a]]

tal que (producto xss) es el producto cartesiano de los conjuntos xss. Por ejemplo,

λ> producto [[1,3],[2,5]]
[[1,2],[1,5],[3,2],[3,5]]
λ> producto [[1,3],[2,5],[6,4]]
[[1,2,6],[1,2,4],[1,5,6],[1,5,4],[3,2,6],[3,2,4],[3,5,6],[3,5,4]]
λ> producto [[1,3,5],[2,4]]
[[1,2],[1,4],[3,2],[3,4],[5,2],[5,4]]
λ> producto []
[[]]

Comprobar con QuickCheck que para toda lista de listas de números enteros, xss, se verifica que el número de elementos de (producto xss) es igual al producto de los números de elementos de cada una de las listas de xss.


Leer más…

Representacion_de_Zeckendorf

Los primeros números de Fibonacci son

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, ...

tales que los dos primeros son iguales a 1 y los siguientes se obtienen sumando los dos anteriores.

El teorema de Zeckendorf establece que todo entero positivo n se puede representar, de manera única, como la suma de números de Fibonacci no consecutivos decrecientes. Dicha suma se llama la representación de Zeckendorf de n. Por ejemplo, la representación de Zeckendorf de 100 es

100 = 89 + 8 + 3

Hay otras formas de representar 100 como sumas de números de Fibonacci; por ejemplo,

100 = 89 +  8 + 2 + 1
100 = 55 + 34 + 8 + 3

pero no son representaciones de Zeckendorf porque 1 y 2 son números de Fibonacci consecutivos, al igual que 34 y 55.

Definir la función

zeckendorf :: Integer -> [Integer]

tal que (zeckendorf n) es la representación de Zeckendorf de n. Por ejemplo,

zeckendorf 100 == [89,8,3]
zeckendorf 200 == [144,55,1]
zeckendorf 300 == [233,55,8,3,1]
length (zeckendorf (10^50000)) == 66097

Leer más…

Ordenada cíclicamente

Se dice que una sucesión x(1), ..., x(n) está ordenada cíclicamente si existe un índice i tal que la sucesión

x(i), x(i+1), ..., x(n), x(1), ..., x(i-1)

está ordenada crecientemente de forma estricta.

Definir la función

ordenadaCiclicamente :: Ord a => [a] -> Maybe Int

tal que (ordenadaCiclicamente xs) es el índice a partir del cual está ordenada, si la lista está ordenado cíclicamente y Nothing en caso contrario. Por ejemplo,

ordenadaCiclicamente [1,2,3,4]      ==  Just 0
ordenadaCiclicamente [5,8,1,3]      ==  Just 2
ordenadaCiclicamente [4,6,7,5,1,3]  ==  Nothing
ordenadaCiclicamente [1,0,3,2]      ==  Nothing
ordenadaCiclicamente [1,2,0]        ==  Just 2
ordenadaCiclicamente "cdeab"        ==  Just 3

Nota: Se supone que el argumento es una lista no vacía sin elementos repetidos.


Leer más…

Eliminación de las ocurrencias aisladas

Definir la función

eliminaAisladas :: Eq a => a -> [a] -> [a]

tal que (eliminaAisladas x ys) es la lista obtenida eliminando ys las ocurrencias aisladas de x (es decir, aquellas ocurrencias de x tales que su elemento anterior y posterior son distintos de x). Por ejemplo,

eliminaAisladas 'X' ""                  == ""
eliminaAisladas 'X' "X"                 == ""
eliminaAisladas 'X' "XX"                == "XX"
eliminaAisladas 'X' "XXX"               == "XXX"
eliminaAisladas 'X' "abcd"              == "abcd"
eliminaAisladas 'X' "Xabcd"             == "abcd"
eliminaAisladas 'X' "XXabcd"            == "XXabcd"
eliminaAisladas 'X' "XXXabcd"           == "XXXabcd"
eliminaAisladas 'X' "abcdX"             == "abcd"
eliminaAisladas 'X' "abcdXX"            == "abcdXX"
eliminaAisladas 'X' "abcdXXX"           == "abcdXXX"
eliminaAisladas 'X' "abXcd"             == "abcd"
eliminaAisladas 'X' "abXXcd"            == "abXXcd"
eliminaAisladas 'X' "abXXXcd"           == "abXXXcd"
eliminaAisladas 'X' "XabXcdX"           == "abcd"
eliminaAisladas 'X' "XXabXXcdXX"        == "XXabXXcdXX"
eliminaAisladas 'X' "XXXabXXXcdXXX"     == "XXXabXXXcdXXX"
eliminaAisladas 'X' "XabXXcdXeXXXfXx"   == "abXXcdeXXXfx"

Leer más…

Emparejamiento de árboles

Los árboles se pueden representar mediante el siguiente tipo de datos

data Arbol a = N a [Arbol a]
  deriving (Show, Eq)

Por ejemplo, los árboles

  1               3
 / \             /|\
6   3           / | \
    |          5  4  7
    5          |     /\
               6    2  1

se representan por

ej1, ej2 :: Arbol Int
ej1 = N 1 [N 6 [],N 3 [N 5 []]]
ej2 = N 3 [N 5 [N 6 []], N 4 [], N 7 [N 2 [], N 1 []]]

Definir la función

emparejaArboles :: (a -> b -> c) -> Arbol a -> Arbol b -> Arbol c

tal que (emparejaArboles f a1 a2) es el árbol obtenido aplicando la función f a los elementos de los árboles a1 y a2 que se encuentran en la misma posición. Por ejemplo,

λ> emparejaArboles (+) (N 1 [N 2 [], N 3[]]) (N 1 [N 6 []])
N 2 [N 8 []]
λ> emparejaArboles (+) ej1 ej2
N 4 [N 11 [],N 7 []]
λ> emparejaArboles (+) ej1 ej1
N 2 [N 12 [],N 6 [N 10 []]]

Leer más…

Separación por posición

Definir la función

particion :: [a] -> ([a],[a])

tal que (particion xs) es el par cuya primera componente son los elementos de xs en posiciones pares y su segunda componente son los restantes elementos. Por ejemplo,

particion [3,5,6,2]    ==  ([3,6],[5,2])
particion [3,5,6,2,7]  ==  ([3,6,7],[5,2])
particion "particion"  ==  ("priin","atco")

Leer más…

Número de inversiones

Se dice que en una sucesión de números x(1), x(2), ..., x(n) hay una inversión cuando existe un par de números x(i) > x(j), siendo i < j. Por ejemplo, en la permutación 2, 1, 4, 3 hay dos inversiones (2 antes que 1 y 4 antes que 3) y en la permutación 4, 3, 1, 2 hay cinco inversiones (4 antes 3, 4 antes 1, 4 antes 2, 3 antes 1, 3 antes 2).

Definir la función

numeroInversiones :: Ord a => [a] -> Int

tal que (numeroInversiones xs) es el número de inversiones de xs. Por ejemplo,

numeroInversiones [2,1,4,3]  ==  2
numeroInversiones [4,3,1,2]  ==  5

Leer más…

Descomposiciones triangulares

Los números triangulares se forman como sigue

*     *      *
     * *    * *
           * * *
1     3      6

La sucesión de los números triangulares se obtiene sumando los números naturales. Así, los 5 primeros números triangulares son

 1 = 1
 3 = 1 + 2
 6 = 1 + 2 + 3
10 = 1 + 2 + 3 + 4
15 = 1 + 2 + 3 + 4 + 5

Definir la función

descomposicionesTriangulares :: Int -> [(Int, Int, Int)]

tal que (descomposicionesTriangulares n) es la lista de las ternas correspondientes a las descomposiciones de n en tres sumandos formados por números triangulares. Por ejemplo,

descomposicionesTriangulares  4 == []
descomposicionesTriangulares  5 == [(1,1,3)]
descomposicionesTriangulares 12 == [(1,1,10),(3,3,6)]
descomposicionesTriangulares 30 == [(1,1,28),(3,6,21),(10,10,10)]
descomposicionesTriangulares 61 == [(1,15,45),(3,3,55),(6,10,45),(10,15,36)]
descomposicionesTriangulares 52 == [(1,6,45),(1,15,36),(3,21,28),(6,10,36),(10,21,21)]
descomposicionesTriangulares 82 == [(1,3,78),(1,15,66),(1,36,45),(6,10,66),(6,21,55),(10,36,36)]

Leer más…

Índices de valores verdaderos

Definir la función

indicesVerdaderos :: [Int] -> [Bool]

tal que (indicesVerdaderos xs) es la lista infinita de booleanos tal que sólo son verdaderos los elementos cuyos índices pertenecen a la lista estrictamente creciente xs. Por ejemplo,

λ> take 6 (indicesVerdaderos [1,4])
[False,True,False,False,True,False]
λ> take 6 (indicesVerdaderos [0,2..])
[True,False,True,False,True,False]
λ> take 3 (indicesVerdaderos [])
[False,False,False]
λ> take 6 (indicesVerdaderos [1..])
[False,True,True,True,True,True]
λ> last (take (8*10^7) (indicesVerdaderos [0,5..]))
False

Leer más…

Código de las alergias

Para la determinación de las alergia se utiliza los siguientes códigos para los alérgenos:

Huevos ........   1
Cacahuetes ....   2
Mariscos ......   4
Fresas ........   8
Tomates .......  16
Chocolate .....  32
Polen .........  64
Gatos ......... 128

Así, si Juan es alérgico a los cacahuetes y al chocolate, su puntuación es 34 (es decir, 2+32).

Los alérgenos se representan mediante el siguiente tipo de dato

data Alergeno = Huevos
              | Cacahuetes
              | Mariscos
              | Fresas
              | Tomates
              | Chocolate
              | Polen
              | Gatos
  deriving (Enum, Eq, Show, Bounded)

Definir la función

alergias :: Int -> [Alergeno]

tal que (alergias n) es la lista de alergias correspondiente a una puntuación n. Por ejemplo,

λ> alergias 1
[Huevos]
λ> alergias 2
[Cacahuetes]
λ> alergias 3
[Huevos,Cacahuetes]
λ> alergias 5
[Huevos,Mariscos]
λ> alergias 255
[Huevos,Cacahuetes,Mariscos,Fresas,Tomates,Chocolate,Polen,Gatos]

Leer más…

Reiteración de una función

Definir la función

reiteracion :: (a -> a) -> Int -> a -> a

tal que (reiteracion f n x) es el resultado de aplicar n veces la función f a x. Por ejemplo,

reiteracion (+1) 10 5  ==  15
reiteracion (+5) 10 0  ==  50
reiteracion (*2)  4 1  ==  16
reiteracion (5:)  4 [] ==  [5,5,5,5]

Leer más…

Elementos de una matriz con algún vecino menor

Las matrices pueden representarse mediante tablas cuyos índices son pares de números naturales. Su tipo se define por

type Matriz = Array (Int,Int) Int

Por ejemplo, la matriz

|9 4 6 5|
|8 1 7 3|
|4 2 5 4|

se define por

ej :: Matriz
ej = listArray ((1,1),(3,4)) [9,4,6,5,8,1,7,3,4,2,5,4]

Los vecinos de un elemento son los que están a un paso en la misma fila, columna o diagonal. Por ejemplo, en la matriz anterior, el 1 tiene 8 vecinos (el 9, 4, 6, 8, 7, 4, 2 y 5) pero el 9 sólo tiene 3 vecinos (el 4, 8 y 1).

Definir la función

algunoMenor :: Matriz -> [Int]

tal que (algunoMenor p) es la lista de los elementos de p que tienen algún vecino menor que él. Por ejemplo,

algunoMenor ej == [9,4,6,5,8,7,4,2,5,4]

pues sólo el 1 y el 3 no tienen ningún vecino menor en la matriz.


Leer más…

Enumeración de árboles binarios

Los árboles binarios se pueden representar mediante el tipo Arbol definido por

data Arbol a = H a
             | N (Arbol a) a (Arbol a)
   deriving Show

Por ejemplo, el árbol

      "B"
      / \
     /   \
    /     \
  "B"     "A"
  / \     / \
"A" "B" "C" "C"

se puede definir por

ej1 :: Arbol String
ej1 = N (N (H "A") "B" (H "B")) "B" (N (H "C") "A" (H "C"))

Definir la función

enumeraArbol :: Arbol t -> Arbol Int

tal que (enumeraArbol a) es el árbol obtenido numerando las hojas y los nodos de a desde la hoja izquierda hasta la raíz. Por ejemplo,

λ> enumeraArbol ej1
N (N (H 0) 1 (H 2)) 3 (N (H 4) 5 (H 6))

Gráficamente,

      3
     / \
    /   \
   /     \
  1       5
 / \     / \
0   2   4   6

Leer más…

Números triangulares con n cifras distintas

Los números triangulares se forman como sigue

*     *      *
     * *    * *
           * * *
1     3      6

La sucesión de los números triangulares se obtiene sumando los números naturales. Así, los 5 primeros números triangulares son

 1 = 1
 3 = 1 + 2
 6 = 1 + 2 + 3
10 = 1 + 2 + 3 + 4
15 = 1 + 2 + 3 + 4 + 5

Definir la función

triangularesConCifras :: Int -> [Integer]

tal que (triangulares n) es la lista de los números triangulares con n cifras distintas. Por ejemplo,

take 6 (triangularesConCifras 1)   ==  [1,3,6,55,66,666]
take 6 (triangularesConCifras 2)   ==  [10,15,21,28,36,45]
take 6 (triangularesConCifras 3)   ==  [105,120,136,153,190,210]
take 5 (triangularesConCifras 4)   ==  [1035,1275,1326,1378,1485]
take 2 (triangularesConCifras 10)  ==  [1062489753,1239845706]

Leer más…

Trenzado de listas

Definir la función

trenza :: [a] -> [a] -> [a]

tal que (trenza xs ys) es la lista obtenida intercalando los elementos de xs e ys. Por ejemplo,

trenza [5,1] [2,7,4]             ==  [5,2,1,7]
trenza [5,1,7] [2..]             ==  [5,2,1,3,7,4]
trenza [2..] [5,1,7]             ==  [2,5,3,1,4,7]
take 8 (trenza [2,4..] [1,5..])  ==  [2,1,4,5,6,9,8,13]

Leer más…

Biparticiones de una lista

Definir la función

biparticiones :: [a] -> [([a],[a])]

tal que (biparticiones xs) es la lista de pares formados por un prefijo de xs y el resto de xs. Por ejemplo,

λ> biparticiones [3,2,5]
[([],[3,2,5]),([3],[2,5]),([3,2],[5]),([3,2,5],[])]
λ> biparticiones "Roma"
[("","Roma"),("R","oma"),("Ro","ma"),("Rom","a"),("Roma","")]

Leer más…

Lista cuadrada


Definir la función

listaCuadrada :: Int -> a -> [a] -> [[a]]

tal que (listaCuadrada n x xs) es una lista de n listas de longitud n formadas con los elementos de xs completada con x, si no xs no tiene suficientes elementos. Por ejemplo,

listaCuadrada 3 7 [0,3,5,2,4]  ==  [[0,3,5],[2,4,7],[7,7,7]]
listaCuadrada 3 7 [0..]        ==  [[0,1,2],[3,4,5],[6,7,8]]
listaCuadrada 2 'p' "eva"      ==  ["ev","ap"]
listaCuadrada 2 'p' ['a'..]    ==  ["ab","cd"]

Leer más…

Máximos locales


Un máximo local de una lista es un elemento de la lista que es que su predecesor y que su sucesor en la lista. Por ejemplo, 5 es un máximo local de [3,2,5,3,7,7,1,6,2] ya que es mayor que 2 (su predecesor) y que 3 (su sucesor).

Definir la función

maximosLocales :: Ord a => [a] -> [a]

tal que (maximosLocales xs) es la lista de los máximos locales de la lista xs. Por ejemplo,

maximosLocales [3,2,5,3,7,7,1,6,2]  ==  [5,6]
maximosLocales [1..100]             ==  []
maximosLocales "adbpmqexyz"         ==  "dpq"

Leer más…

Matrices de Toepliz


Una matriz de Toeplitz es una matriz cuadrada que es constante a lo largo de las diagonales paralelas a la diagonal principal. Por ejemplo,

|2 5 1 6|       |2 5 1 6|
|4 2 5 1|       |4 2 6 1|
|7 4 2 5|       |7 4 2 5|
|9 7 4 2|       |9 7 4 2|

la primera es una matriz de Toeplitz y la segunda no lo es.

Las anteriores matrices se pueden definir por

ej1, ej2 :: Array (Int,Int) Int
ej1 = listArray ((1,1),(4,4)) [2,5,1,6,4,2,5,1,7,4,2,5,9,7,4,2]
ej2 = listArray ((1,1),(4,4)) [2,5,1,6,4,2,6,1,7,4,2,5,9,7,4,2]

Definir la función

esToeplitz :: Eq a => Array (Int,Int) a -> Bool

tal que (esToeplitz p) se verifica si la matriz p es de Toeplitz. Por ejemplo,

esToeplitz ej1  ==  True
esToeplitz ej2  ==  False

Leer más…

Diagonales principales


La lista de las diagonales principales de la matriz

1  2  3  4
5  6  7  8
9 10 11 12

es

[[9],[5,10],[1,6,11],[2,7,12],[3,8],[4]]

Definir la función

diagonalesPrincipales :: Array (Int,Int) a -> [[a]]

tal que (diagonalesPrincipales p) es la lista de las diagonales principales de p. Por ejemplo,

λ> diagonalesPrincipales (listArray ((1,1),(3,4)) [1..12])
[[9],[5,10],[1,6,11],[2,7,12],[3,8],[4]]

Nota: Escribir las soluciones en Haskell, en Python y en Common Lisp.


Leer más…

Posiciones de las diagonales principales


Las posiciones de una matriz con 3 filas y 4 columnas son

(1,1) (1,2) (1,3) (1,4)
(2,1) (2,2) (2,3) (2,4)
(3,1) (3,2) (3,3) (3,4)

Las posiciones de sus 6 diagonales principales son

[(3,1)]
[(2,1),(3,2)]
[(1,1),(2,2),(3,3)]
[(1,2),(2,3),(3,4)]
[(1,3),(2,4)]
[(1,4)]

Definir la función

posicionesDiagonalesPrincipales :: Int -> Int -> [[(Int, Int)]]

tal que (posicionesdiagonalesprincipales m n) es la lista de las posiciones de las diagonales principales de una matriz con m filas y n columnas. Por ejemplo,

λ> mapM_ print (posicionesDiagonalesPrincipales 3 4)
[(3,1)]
[(2,1),(3,2)]
[(1,1),(2,2),(3,3)]
[(1,2),(2,3),(3,4)]
[(1,3),(2,4)]
[(1,4)]
λ> mapM_ print (posicionesDiagonalesPrincipales 4 4)
[(4,1)]
[(3,1),(4,2)]
[(2,1),(3,2),(4,3)]
[(1,1),(2,2),(3,3),(4,4)]
[(1,2),(2,3),(3,4)]
[(1,3),(2,4)]
[(1,4)]
λ> mapM_ print (posicionesDiagonalesPrincipales 4 3)
[(4,1)]
[(3,1),(4,2)]
[(2,1),(3,2),(4,3)]
[(1,1),(2,2),(3,3)]
[(1,2),(2,3)]
[(1,3)]

Leer más…

Primos equidistantes


Definir la función

primosEquidistantes :: Integer -> [(Integer,Integer)]

tal que (primosEquidistantes k) es la lista de los pares de primos cuya diferencia es k. Por ejemplo,

take 3 (primosEquidistantes 2)  ==  [(3,5),(5,7),(11,13)]
take 3 (primosEquidistantes 4)  ==  [(7,11),(13,17),(19,23)]
take 3 (primosEquidistantes 6)  ==  [(23,29),(31,37),(47,53)]
take 3 (primosEquidistantes 8)  ==  [(89,97),(359,367),(389,397)]
primosEquidistantes 4 !! (10^5) ==  (18467047,18467051)

Leer más…

Anagramas


Una palabra es una anagrama de otra si se puede obtener permutando sus letras. Por ejemplo, "mora" y "roma" son anagramas de "amor".

Definir la función

anagramas :: String -> [String] -> [String]

tal que (anagramas x ys) es la lista de los elementos de ys que son anagramas de x. Por ejemplo,

λ> anagramas "amor" ["Roma","mola","loma","moRa", "rama"]
["Roma","moRa"]
λ> anagramas "rama" ["aMar","amaRa","roMa","marr","aRma"]
["aMar","aRma"]

Nota: Escribir las soluciones en Haskell, en Python y en Common Lisp.


Leer más…

La bandera tricolor


El problema de la bandera tricolor consiste en lo siguiente: Dada un lista de objetos xs que pueden ser rojos, amarillos o morados, se pide devolver una lista que contiene los elementos de xs, primero los rojos, luego los amarillos y por último los morados.

Definir el tipo de dato Color para representar los colores con los constructores R, A y M correspondientes al rojo, azul y morado y la función

banderaTricolor :: [Color] -> [Color]

tal que (banderaTricolor xs) es la bandera tricolor formada con los elementos de xs. Por ejemplo,

banderaTricolor [M,R,A,A,R,R,A,M,M]  ==  [R,R,R,A,A,A,M,M,M]
banderaTricolor [M,R,A,R,R,A]        ==  [R,R,R,A,A,M]

Leer más…

Ordenación por el máximo


Definir la función

ordenadosPorMaximo :: Ord a => [[a]] -> [[a]]

tal que (ordenadosPorMaximo xss) es la lista de los elementos de xss ordenada por sus máximos (se supone que los elementos de xss son listas no vacía) y cuando tiene el mismo máximo se conserva el orden original. Por ejemplo,

λ> ordenadosPorMaximo [[0,8],[9],[8,1],[6,3],[8,2],[6,1],[6,2]]
[[6,3],[6,1],[6,2],[0,8],[8,1],[8,2],[9]]
λ> ordenadosPorMaximo ["este","es","el","primero"]
["el","primero","es","este"]

Leer más…

Iguales al siguiente


Definir la función

igualesAlSiguiente :: Eq a => [a] -> [a]

tal que (igualesAlSiguiente xs) es la lista de los elementos de xs que son iguales a su siguiente. Por ejemplo,

igualesAlSiguiente [1,2,2,2,3,3,4]  ==  [2,2,3]
igualesAlSiguiente [1..10]          ==  []

Nota: Escribir las soluciones en Haskell y en Python.


Leer más…

Primos consecutivos con media capicúa


Definir la list

primosConsecutivosConMediaCapicua :: [(Int,Int,Int)]

formada por las ternas (x,y,z) tales que x e y son primos consecutivos cuya media, z, es capicúa. Por ejemplo,

λ> take 5 primosConsecutivosConMediaCapicua
[(3,5,4),(5,7,6),(7,11,9),(97,101,99),(109,113,111)]
λ> primosConsecutivosConMediaCapicua !! 500
(5687863,5687867,5687865)

Nota: Escribir las soluciones en Haskell y en Python.


Leer más…

Mastermind


El Mastermind es un juego que consiste en deducir un código numérico formado por una lista de números. Cada vez que se una partida, el programa debe elegir un código, que será lo que el jugador debe adivinar en la menor cantidad de intentos posibles. Cada intento consiste en una propuesta de un código posible que propone el jugador, y una respuesta del programa. Las respuestas le darán pistas al jugadorpara que pueda deducir el código.

Estas pistas indican lo cerca que estuvo el número propuesto de la solución a través de dos valores: la cantidad de aciertos es la cantidad de dígitos que propuso el jugador que también están en el código en la misma posición. La cantidad de coincidencias es la cantidad de dígitos que propuso el jugador que también están en el código pero en una posición distinta.

Por ejemplo, si el código que eligió el programa es el [2,6,0,7] y el jugador propone el [1,4,0,6], el programa le debe responder un acierto (el 0, que está en el código original en el mismo lugar, el tercero), y una coincidencia (el 6, que también está en el código original, pero en la segunda posición, no en el cuarto como fue propuesto). Si el jugador hubiera propuesto el [3,5,9,1], habría obtenido como respuesta ningún acierto y ninguna coincidencia, ya que no hay números en común con el código original. Si se obtienen cuatro aciertos es porque el jugador adivinó el código y ganó el juego.

Definir la función

mastermind :: [Int] -> [Int] -> (Int, Int)

tal que (mastermind xs ys) es el par formado por los números de aciertos y de coincidencias entre xs e ys. Por ejemplo,

mastermind [3,3] [3,2]          ==  (1,0)
mastermind [3,5,3] [3,2,5]      ==  (1,1)
mastermind [3,5,3,2] [3,2,5,3]  ==  (1,3)
mastermind [3,5,3,3] [3,2,5,3]  ==  (2,1)
mastermind [1..10^6] [1..10^6]  ==  (1000000,0)

Nota: Escribir las soluciones en Haskell y en Python.


Leer más…

Determinación de los elementos minimales


Definir la función

minimales :: Ord a => [[a]] -> [[a]]

tal que (minimales xss) es la lista de los elementos de xss que no están contenidos en otros elementos de xss. Por ejemplo,

minimales [[1,3],[2,3,1],[3,2,5]]        ==  [[2,3,1],[3,2,5]]
minimales [[1,3],[2,3,1],[3,2,5],[3,1]]  ==  [[2,3,1],[3,2,5]]
map sum (minimales [[1..n] | n <- [1..300]])  ==  [45150]

Nota: Escribir las soluciones en Haskell y en Python.


Leer más…

Suma de los números amigos menores que n

Dos números amigos son dos números enteros positivos distintos tales que la suma de los divisores propios de cada uno es igual al otro. Los divisores propios de un número incluyen la unidad pero no al propio número. Por ejemplo, los divisores propios de 220 son 1, 2, 4, 5, 10, 11, 20, 22, 44, 55 y 110. La suma de estos números equivale a 284. A su vez, los divisores propios de 284 son 1, 2, 4, 71 y 142. Su suma equivale a 220. Por tanto, 220 y 284 son amigos.

Definir la función

sumaAmigosMenores :: Integer -> Integer

tal que (sumaAmigosMenores n) es la suma de los números amigos menores que n. Por ejemplo,

sumaAmigosMenores 2000   == 2898
sumaAmigosMenores (10^5) == 852810

Leer más…

Sucesión de números amigos

Dos números amigos son dos números enteros positivos distintos tales que la suma de los divisores propios de cada uno es igual al otro. Los divisores propios de un número incluyen la unidad pero no al propio número. Por ejemplo, los divisores propios de 220 son 1, 2, 4, 5, 10, 11, 20, 22, 44, 55 y 110. La suma de estos números equivale a 284. A su vez, los divisores propios de 284 son 1, 2, 4, 71 y 142. Su suma equivale a 220. Por tanto, 220 y 284 son amigos.

Definir la lista

sucesionAmigos :: [(Integer,Integer)]

cuyos elementos son los pares de números amigos con la primera componente menor que la segunda. Por ejemplo,

take 4 sucesionAmigos == [(220,284),(1184,1210),(2620,2924),(5020,5564)]
sucesionAmigos6 !! 20 == (185368,203432)

Leer más…

Números amigos

Dos números amigos son dos números enteros positivos distintos tales que la suma de los divisores propios de cada uno es igual al otro. Los divisores propios de un número incluyen la unidad pero no al propio número. Por ejemplo, los divisores propios de 220 son 1, 2, 4, 5, 10, 11, 20, 22, 44, 55 y 110. La suma de estos números equivale a 284. A su vez, los divisores propios de 284 son 1, 2, 4, 71 y 142. Su suma equivale a 220. Por tanto, 220 y 284 son amigos.

Definir la función

amigos :: Integer -> Integer -> Bool

tal que (amigos x y) se verifica si los números x e y son amigos. Por ejemplo,

amigos 220 284 == True
amigos 220 23  == False
amigos 42262694537514864075544955198125 42405817271188606697466971841875 == True

Leer más…

Máxima suma de caminos en un triángulo

Los triángulos se pueden representar mediante listas de listas. Por ejemplo, el triángulo

   3
  7 4
 2 4 6
8 5 9 3

se representa por

[[3],[7,4],[2,4,6],[8,5,9,3]]

Definir la función

maximaSuma :: [[Integer]] -> Integer

tal que (maximaSuma xss) es el máximo de las sumas de los elementos de los caminos en el triángulo xss donde los caminos comienzan en el elemento de la primera fila, en cada paso se mueve a uno de sus dos elementos adyacentes en la fila siguiente y terminan en la última fila. Por ejemplo,

maximaSuma [[3],[7,4]]                    ==  10
maximaSuma [[3],[7,4],[2,4,6]]            ==  14
maximaSuma [[3],[7,4],[2,4,6],[8,5,9,3]]  ==  23
maximaSuma [[n..n+n] | n <- [0..100]]     ==  10100
maximaSuma [[n..n+n] | n <- [0..1000]]    ==  1001000
maximaSuma [[n..n+n] | n <- [0..2000]]    ==  4002000
maximaSuma [[n..n+n] | n <- [0..3000]]    ==  9003000
maximaSuma [[n..n+n] | n <- [0..4000]]    ==  16004000

Leer más…

Caminos en un triángulo

Los triángulos se pueden representar mediante listas de listas. Por ejemplo, el triángulo

      3
     7 4
    2 4 6
   8 5 9 3

se representa por

[[3],[7,4],[2,4,6],[8,5,9,3]]

Definir la función

caminos :: [[a]] -> [[a]]

tal que (caminos xss) es la lista de los caminos en el triángulo xss donde los caminos comienzan en el elemento de la primera fila, en cada paso se mueve a uno de sus dos elementos adyacentes en la fila siguiente y terminan en la última fila. Por ejemplo,

λ> caminos [[3],[7,4]]
[[3,7],[3,4]]
λ> caminos [[3],[7,4],[2,4,6]]
[[3,7,2],[3,7,4],[3,4,4],[3,4,6]]
λ> caminos [[3],[7,4],[2,4,6],[8,5,9,3]]
[[3,7,2,8],[3,7,2,5],[3,7,4,5],[3,7,4,9],[3,4,4,5],[3,4,4,9],[3,4,6,9],[3,4,6,3]]

Leer más…

Mayor órbita de la sucesión de Collatz

Se considera la siguiente operación, aplicable a cualquier número entero positivo:

  • Si el número es par, se divide entre 2.
  • Si el número es impar, se multiplica por 3 y se suma 1.

Dado un número cualquiera, podemos calcular su órbita; es decir, las imágenes sucesivas al iterar la función. Por ejemplo, la órbita de 13 es

   13, 40, 20, 10, 5, 16, 8, 4, 2, 1, 4, 2, 1,...

Si observamos este ejemplo, la órbita de 13 es periódica, es decir, se repite indefinidamente a partir de un momento dado). La conjetura de Collatz dice que siempre alcanzaremos el 1 para cualquier número con el que comencemos. Ejemplos:

  • Empezando en n = 6 se obtiene 6, 3, 10, 5, 16, 8, 4, 2, 1.
  • Empezando en n = 11 se obtiene: 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1.
  • Empezando en n = 27, la sucesión tiene 112 pasos, llegando hasta 9232 antes de descender a 1: 27, 82, 41, 124, 62, 31, 94, 47, 142, 71, 214, 107, 322, 161, 484, 242, 121, 364, 182, 91, 274, 137, 412, 206, 103, 310, 155, 466, 233, 700, 350, 175, 526, 263, 790, 395, 1186, 593, 1780, 890, 445, 1336, 668, 334, 167, 502, 251, 754, 377, 1132, 566, 283, 850, 425, 1276, 638, 319, 958, 479, 1438, 719, 2158, 1079, 3238, 1619, 4858, 2429, 7288, 3644, 1822, 911, 2734, 1367, 4102, 2051, 6154, 3077, 9232, 4616, 2308, 1154, 577, 1732, 866, 433, 1300, 650, 325, 976, 488, 244, 122, 61, 184, 92, 46, 23, 70, 35, 106, 53, 160, 80, 40, 20, 10, 5, 16, 8, 4, 2, 1.

Definir la función

   mayoresGeneradores :: Integer -> [Integer]

tal que (mayoresGeneradores n) es la lista de los números menores o iguales que n cuyas órbitas de Collatz son las de mayor longitud. Por ejemplo,

   mayoresGeneradores 20      ==  [18,19]
   mayoresGeneradores (10^6)  ==  [837799]

Leer más…