Si el límite de la sucesión uₙ es a, entonces el límite de -uₙ es -a
En Lean4, una sucesión \(u₀, u₁, u₂, ...\) se puede representar mediante una función \(u : ℕ → ℝ\) de forma que \(u(n)\) es \(uₙ\).
Se define que \(c\) es el límite de la sucesión \(u\), por
def limite : (ℕ → ℝ) → ℝ → Prop := fun u c ↦ ∀ ε > 0, ∃ N, ∀ n ≥ N, |u n - c| < ε
Demostrar con Lean4 que que si el límite de \(u_n\) es \(a\), entonces el de \(-u_n\) es \(-a\).
Para ello, completar la siguiente teoría de Lean4:
import Mathlib.Data.Real.Basic import Mathlib.Tactic variable (u v : ℕ → ℝ) variable (a c : ℝ) def limite : (ℕ → ℝ) → ℝ → Prop := fun u c ↦ ∀ ε > 0, ∃ N, ∀ n ≥ N, |u n - c| < ε example (h : limite u a) : limite (fun n ↦ -u n) (-a) := by sorry